Using Taylor Models in the Reachability Analysis of Non-linear Hybrid Systems

Xin Chen¹ Erika Ábrahám¹ Sriram Sankaranarayanan²

¹RWTH Aachen University, Germany

²University of Colorado, Boulder, CO.

SWIM 2012

- 2 Taylor model method
- 3 Intersections of Taylor models and guards
- 4 Experimental results

1 Verification of hybrid systems

- 2 Taylor model method
- Intersections of Taylor models and guards
- 4 Experimental results

5 Future work

Given a hybrid system on which we would like to verifiy

- **Reachability** A given state set is reachable.
- **Safety** No unsafe state is reachable.
- **Some good properties** keep happening.

④ ...

Given a hybrid system on which we would like to verifiy

- **Reachability** A given state set is reachable.
- **Safety** No unsafe state is reachable.
- **Some good properties** keep happening.

④ ...

Many important properties can be reduced to reachability.

Continuous part:

- Overestimation is *heavily* accumulated.
- **2** Global accuracy improvement is inefficient.

Discrete part:

- Flowpipe/guard and flowpipe/invariant intersections are difficult to compute.
- **2** Reducing the complexity of intersections is also hard.

Continuous part:

- Overestimation is *heavily* accumulated.
- **2** Global accuracy improvement is inefficient.

Discrete part:

- Flowpipe/guard and flowpipe/invariant intersections are difficult to compute.
- Reducing the complexity of intersections is also hard.

We try to find new trade-off between accuracy and efficiency.

1 Verification of hybrid systems

2 Taylor model method

Intersections of Taylor models and guards

4 Experimental results

5 Future work

Polynomial *p* is a *k*-order approximation of a smooth function $f: D \to \mathbb{R}$ iff (a) $f \in C^k$ (b) $f(\vec{c}) = p(\vec{c})$ for the center point \vec{c} of *D* and for each $0 < m \le k$: $\frac{\partial^m f}{\partial \vec{x}^m}\Big|_{\vec{r}=\vec{c}} = \frac{\partial^m p}{\partial \vec{x}^m}\Big|_{\vec{r}=\vec{c}}$.

Examples

Several high order approximations of $f(x) = e^x$ with $x \in [-1, 1]$.

0-order approximation

Xin Chen

Examples

Several high order approximations of $f(x) = e^x$ with $x \in [-1, 1]$.

1-order approximation

Xin Chen

Examples

Several high order approximations of $f(x) = e^x$ with $x \in [-1, 1]$.

2-order approximation

Xin Chen

- Introduced by Berz and Makino.
- Taylor model: a pair (*p*, *l*) over an *interval* domain *D*. It defines the set

 $p + I = \{ \vec{x} = p(\vec{x}_0) + \vec{y} \mid \vec{x}_0 \in D \land \vec{y} \in I \}$

• Closed under many basic operations.

Berz. Modern Map Methods in Particle Beam Physics. ser. Advances in Imaging and Electron Physics. Academic Press, 1999, vol. 108.

High order over-approximations by Taylor models

0-order over-approximation

High order over-approximations by Taylor models

1-order over-approximation

High order over-approximations by Taylor models

2-order over-approximation

Addition:

$$(p_1, l_1) + (p_2, l_2) = (p_1 + p_2, l_1 \oplus l_2)$$

Multiplication:

 $(p_1, l_1) * (p_2, l_2) = (p_1 * p_2, (B(p_1) \otimes l_2) \oplus (l_1 \otimes B(p_2)) \oplus (l_1 \otimes l_2))$ Truncation:

 $\operatorname{Trunc}_k((p_n, I)) = (p_k, I \oplus B(p_n - p_k))$

More operations: anti-derivation, Lie derivation, ...

Makino and Berz. Taylor models and other validated functional inclusion methods. *J. Pure and Applied Mathematics*, vol. 4, no. 4, 2003.

Assume the ODE is $\frac{d\vec{x}}{dt} = f(\vec{x}, t)$ and the initial set is given by a Taylor model X_0 over domain D_0 . In the *i*th integration step,

Berz and Makino. Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. *Reliable Computing*, vol. 4, 1998. Berz and Makino. Rigorous integration of flows and ODEs using Taylor models. *In Proc. of SNC'09.*

Verified integration by Taylor models

Assume the ODE is $\frac{d\vec{x}}{dt} = f(\vec{x}, t)$ and the initial set is given by a Taylor model X_0 over domain D_0 . In the *i*th integration step,

 Compute a k-order approximation p_k(x₀, t) over x₀ ∈ X_{i-1}, t ∈ [0, t_i − t_{i-1}] for the flow starting from the Taylor model X_{i-1}.

Berz and Makino. Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. *Reliable Computing*, vol. 4, 1998. Berz and Makino. Rigorous integration of flows and ODEs using Taylor models. *In Proc. of SNC'09.*

Assume the ODE is $\frac{d\vec{x}}{dt} = f(\vec{x}, t)$ and the initial set is given by a Taylor model X_0 over domain D_0 . In the *i*th integration step,

- Compute a k-order approximation p_k(x₀, t) over x₀ ∈ X_{i-1}, t ∈ [0, t_i − t_{i-1}] for the flow starting from the Taylor model X_{i-1}.
- **2** Evaluate a proper remainder I_k such that $(p_k(\vec{x}_0, t), I_k)$ is an over-approximation of the flow in $[0, t_i t_{i-1}]$.

Berz and Makino. Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. *Reliable Computing*, vol. 4, 1998. Berz and Makino. Rigorous integration of flows and ODEs using Taylor models. *In Proc. of SNC'09.*

Assume the ODE is $\frac{d\vec{x}}{dt} = f(\vec{x}, t)$ and the initial set is given by a Taylor model X_0 over domain D_0 . In the *i*th integration step,

- Compute a k-order approximation p_k(x₀, t) over x₀ ∈ X_{i-1}, t ∈ [0, t_i − t_{i-1}] for the flow starting from the Taylor model X_{i-1}.
- 2 Evaluate a proper remainder I_k such that $(p_k(\vec{x}_0, t), I_k)$ is an over-approximation of the flow in $[0, t_i t_{i-1}]$.
- Compute the *i*th flowpipe $X_{[t_{i-1},t_i]} = (p_k(X_{i-1},t), I_k)$, and $X_i = (p_k(X_{i-1},t_i-t_{i-1}), I_k)$.

Berz and Makino. Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. *Reliable Computing*, vol. 4, 1998. Berz and Makino. Rigorous integration of flows and ODEs using Taylor models. *In Proc. of SNC'09.*

Performance

Xin Chen

Complexity: If *p* is a polynomial with *n* variables and *k* degree, then it could have $\binom{n+k}{k}$ monomials in the worst case.

Complexity: If *p* is a polynomial with *n* variables and *k* degree, then it could have $\binom{n+k}{k}$ monomials in the worst case.

Accuracy:

- The initial set in every step is represented by a *high order model*.
- By Taylor model arithmetic, *overestimation is effectively restricted*.
- Auxiliary methods can be used to further improve the accuracy, such as shrink wrapping, preconditioning, ...

Continuous systems:

Van-der-Pol oscillator

Brusselator

Rössler attractor

Continuous systems:

How can we apply Taylor models to hybrid systems?

1 Verification of hybrid systems

2 Taylor model method

3 Intersections of Taylor models and guards

4 Experimental results

5 Future work

Xin Chen

- In a mode:
 - Verified integration by using Taylor models.
 - Compute flowpipe/invariant intersections.
- For a discrete transition:
 - Compute flowpipe/guard intersections.
 - Compute the image of the reset mapping.
- In a mode:
 - Verified integration by using Taylor models.
 - Compute flowpipe/invariant intersections.
- For a discrete transition:
 - Compute flowpipe/guard intersections.
 - Compute the image of the reset mapping.

Intersection of a Taylor model (p, I) and a guard:

Taylor model

We propose the following techniques to over-approximate the intersection $(p, l) \cap G$.

• Domain contraction -

Contract the domain of p such that (p, l) with the new domain is the over-approximation.

• Range over-approximation -

Over-approximate the Taylor model (p, l) by a convex set S, then compute $S \cap G$.

• Template method -

Compute a Taylor model over-approximation $(p^*, 0)$ based on a given *template*.

We propose the following techniques to over-approximate the intersection $(p, l) \cap G$.

• Domain contraction -

Contract the domain of p such that (p, l) with the new domain is the over-approximation.

• Range over-approximation -

Over-approximate the Taylor model (p, l) by a convex set S, then compute $S \cap G$.

• Template method -

Compute a Taylor model over-approximation $(p^*, 0)$ based on a given *template*.

They can be used in a combination.

Domain contraction - An example

21/43

Compute an *interval* contraction by *interval constraint propagation*:

- Contract the interval in one dimension.
- Propagate the result to the next dimension.

Compute an *interval* contraction by *interval constraint propagation*:

- Contract the interval in one dimension.
- **2** Propagate the result to the next dimension.

Accuracy can be further improved by

- Perform the contraction through all dimensions for several times.
- Determine an order on the dimensions and perform the contraction for one time.

Compute the lower bound for the contracted domain in the i^{th} dimension.

- 1: while the size of $[\mathit{lo},\mathit{up}]$ is larger than $\epsilon~\mathbf{do}$
- 2: Split [*lo*, *up*] into [*lo*, *a*] and [*a*, *up*] wherein $a = \frac{lo+up}{2}$;
- 3: **if** $(p(\vec{y}), I)$ with $\vec{y} \in D$ and $(\vec{y})_i \in [Io, a]$ intersects the guard **then**
- 4: $up \leftarrow a;$
- 5: else
- 6: $lo \leftarrow a;$
- 7: end if
- 8: end while
- 9: return *lo*;

Compute the lower bound for the contracted domain in the i^{th} dimension.

- 1: while the size of $[\mathit{lo},\mathit{up}]$ is larger than $\epsilon~\mathbf{do}$
- 2: Split [*lo*, *up*] into [*lo*, *a*] and [*a*, *up*] wherein $a = \frac{lo+up}{2}$;
- 3: if $(p(\vec{y}), I)$ with $\vec{y} \in D$ and $(\vec{y})_i \in [Io, a]$ intersects the guard then
- 4: $up \leftarrow a;$
- 5: else
- 6: $lo \leftarrow a;$
- 7: end if
- 8: end while
- 9: return *lo*;

Check the emptiness of

 $\{\vec{x} \in \mathbb{R}^n \mid \vec{x} = p(\vec{y}) + \vec{z} \land \vec{y} \in D \land \vec{z} \in I \land \gamma(\vec{x})\}$

Approximation methods: Conservative simplification on p and γ .

Domain contraction - An example

Xin Chen

25 / 43

Advantages:

- Polynomial computation time.
- The result is still a Taylor model.

Disadvantages:

- The contracted domain is always an interval.
- Large overestimation might be introduced when either ${\it p}$ or γ is of high degree.

• Over-approximate (p, l) by a set S which can be a

• support function -

Conservative over-approximation of a polynomial.

• zonotope -

Zonotopes are order 1 Taylor models and vise versa.

2 Over-approximate $S \cap G$ by a Taylor model.

Sankaranarayanan, Dang and Ivancic. Symbolic Model Checking of Hybrid Systems Using Template Polyhedra. In *Proc. of TACAS'08.* Le Guernic and Girard. Reachability Analysis of Hybrid Systems Using Support Functions. In *Proc. of CAV'09.*

Advantages:

- Available algorithms can be used.
- The orientation of the over-approximation can be chosen. Disadvantages:
 - Multi-time over-approximation.
 - Best orientation is not easy to find.

Template method

We call $p^*(\vec{x_0})$ a *template polynomial* if its domain is given by

 $\vec{x}_0 \in D_u = [\ell_1, u_1] \times [\ell_2, u_2] \times \cdots \times [\ell_n, u_n]$

wherein $\ell_1, \ldots, \ell_n, u_1, \ldots, u_n$ are unknown parameters.

Sankaranarayanan, Sipma and Manna. Constructing invariants for hybrid systems. Formal Methods in System Design. 2008. Gulwani and Tiwari. Constraint-Based Approach for Analysis of Hybrid Systems. In Proc. of CAV'08.

Template method

We call $p^*(\vec{x}_0)$ a *template polynomial* if its domain is given by

 $\vec{x}_0 \in D_u = [\ell_1, u_1] \times [\ell_2, u_2] \times \cdots \times [\ell_n, u_n]$

wherein $\ell_1, \ldots, \ell_n, u_1, \ldots, u_n$ are unknown parameters.

We find the parameters such that the Taylor model $(p^*, 0)$ contains the intersection $(p, l) \cap G$:

 $\begin{aligned} \forall \vec{x}. ((\vec{x} = p(\vec{y}) + \vec{z} \land \vec{y} \in D \land \vec{z} \in I \land \vec{x} \in G) \\ \rightarrow \exists \vec{x}_0. (\vec{x} = p^*(\vec{x}_0) \land \vec{x}_0 \in D_u)) \end{aligned}$

Sankaranarayanan, Sipma and Manna. Constructing invariants for hybrid systems. Formal Methods in System Design. 2008. Gulwani and Tiwari. Constraint-Based Approach for Analysis of Hybrid Systems. In Proc. of CAV'08.

Template method

We call $p^*(\vec{x}_0)$ a *template polynomial* if its domain is given by

 $\vec{x}_0 \in D_u = [\ell_1, u_1] \times [\ell_2, u_2] \times \cdots \times [\ell_n, u_n]$

wherein $\ell_1, \ldots, \ell_n, u_1, \ldots, u_n$ are unknown parameters.

We find the parameters such that the Taylor model $(p^*, 0)$ contains the intersection $(p, l) \cap G$:

$$\begin{aligned} \forall \vec{x}.((\vec{x} = p(\vec{y}) + \vec{z} \land \vec{y} \in D \land \vec{z} \in I \land \vec{x} \in G) \\ \rightarrow \exists \vec{x}_0.(\vec{x} = p^*(\vec{x}_0) \land \vec{x}_0 \in D_u)) \end{aligned}$$

We may also add more constraints to limit the overestimation.

Sankaranarayanan, Sipma and Manna. Constructing invariants for hybrid systems. Formal Methods in System Design. 2008. Gulwani and Tiwari. Constraint-Based Approach for Analysis of Hybrid Systems. In Proc. of CAV'08.

Advantages:

- Flexibility.
- The unknown parameters can be found by SMT solving.
- Disadvantages:
 - Bad scalability because of the quantifier elimination.
 - Best template is not easy to find.

1 Verification of hybrid systems

2 Taylor model method

Intersections of Taylor models and guards

4 Experimental results

5 Future work

$$\begin{cases} \frac{dG}{dt} = -p_1 G - X(G + G_B) + g(t) \\ \frac{dX}{dt} = -p_2 X + p_3 I \\ \frac{dI}{dt} = -n(I + I_b) + \frac{1}{V_I} i(t) \end{cases}$$

Typical parameters:

$$p_1 = 0.01, \quad p_2 = 0.025, \quad p_3 = 1.3 \times 10^{-5}, \quad V_I = 12, \\ n = 0.093, \quad G_B = 4.5, \qquad I_b = 15.$$

 $\begin{array}{ll} G & \mbox{plasma glucose concentration above the basal value } G_B \\ I & \mbox{plasma insulin concentration above the basal value } I_B \\ X & \mbox{insulin concentration in an interstitial chamber} \end{array}$

g(t) infusion of glucose into the bloodstream i(t) infusion of insulin into the bloodstream The infusion of glucose after a meal:

$$g(t) = \begin{cases} \frac{t}{60} & t \le 30\\ \frac{120-t}{180} & t \in [30, 120]\\ 0 & t \ge 120 \end{cases}$$

Two control schemes:

$$egin{aligned} g_1(t) = \left\{egin{aligned} rac{25}{3} & G(t) \leq 4 \ rac{25}{3}(G(t)-3) & G(t) \in [4,8] \ rac{125}{3} & G(t) \geq 8 \end{aligned}
ight. \ i_2(t) = \left\{egin{aligned} 1+rac{2G(t)}{9} & G(t) < 6 \ rac{50}{3} & G(t) \geq 6 \end{array}
ight. \end{aligned}
ight.$$

Our platform: CPU i7-860 2.8 GHz Memory: 4 GB Order of the Taylor models: 9 Time step: 0.02 Time horizon: [0,360] Total time: 2138 s Time of intersection: 663 s Memory: 430 MB

Order of the Taylor models: 9 Time step: 0.02 Time horizon: [0,360] Total time: 1804 s Time of intersection: 443 s Memory: 410 MB

Vehicle model

The dynamics of a non-holonomic vehicle is given as follows,

$$\frac{dx}{dt} = vc_t \qquad \frac{dy}{dt} = vs_t \qquad \frac{dv}{dt} = u_1$$
$$\frac{dc_t}{dt} = \sigma v^2 s_t \qquad \frac{ds_t}{dt} = -\sigma v^2 c_t \qquad \frac{dv}{dt} = u_2$$

Initial set:

$$\begin{array}{ll} x \in [1,1.2] & y \in [1,1.2] & v \in [0.8,0.81] \\ s_t \in [0.7,0.71] & c_t \in [0.7,0.71] & \sigma \in [0,0.05] \,. \end{array}$$

Xin Chen

37 / 43

Vehicle model

Order of the Taylor models: 9 Time step: 0.1 Time horizon: [0,10] Total time: 85 s Time of intersection: 40 s Memory: 4 MB

Xin Chen

Using Taylor Models in the Reachability Analysis of Non-linear Hybrid Systems

Scalability tests

D = 6											
	deg	= 2		deg = 4							
size	order	Т	mem	size	order	Т	mem				
3	4	8	4	3	4	18	4				
	9	211	12		9	449	12				
5	4	13	4	- 5	4	27	4				
	9	298	12		9	587	12				
7	4	18	4	7	4	36	4				
	9	373	12		9	687	12				
D = 8											
	deg	= 2		deg = 4							
size	order	Т	mem	size	order	Т	mem				
3	4	14	4	3	4	23	4				
3	9	1389	28		9	2430	28				
5	4	18	4	- 5	4	27	4				
	9	1433	28		9	2446	28				
7	4	22	4	7	4	28	4				
'	9	2074	28	1 '	9	2474	28				
			D =	= 10							
	deg	= 2		deg = 4							
size	order	Т	mem	size	order	Т	mem				
3	4	16	4	3	4	27	8				
	9	t.o.	-		9	t.o.	-				
5	4	22	8	5	4	46	8				
	9	t.o.	-		9	t.o.	-				
7	4	35	8	7	4	62	8				
	9	t.o.	-	1 '	9	t.o.	-				

Dang and Testylier. Hybridization domain construction using curvature estimation. In Proc. of HSCC'11.

				Our tool						Ariadne			
Benchmark	DEG	LOC	VAR	δ	Т	ORD	T.T.	T.I.	MEM	D.C.	R.M.	T.T	MEM
Brusselator	3	1	2	0.05	[0,10]	4	77	0	4	-	-	34	12
Brusselator	3	1	2	0.03	[0,15]	4	152	0	8	-	-	EXC	-
Watertank	1	4	2	0.1	[0,80]	3	9	5	8	\checkmark	Z	7	24
Van-der-PolE	3	2	3	0.01	[0,6]	4	71	37	4	\checkmark	Z	EXC	-
Lotka-Volterra	2	1	3	0.01	[0,3]	4	14	0	8	-	-	52	8
Hallstah	3	1	2	0.01	[0,7]	3	19	0	≤ 1	-	-	0.6	≤ 1
B.B. no drag	1	1	4	0.02	[0,3]	3	0.8	0.3	≤ 1	\checkmark	-	0.2	≤ 1
B.B. const drag	1	2	4	0.02	[0,3]	3	2	0.8	≤ 1	\checkmark	-	0.6	≤ 1
B.B. Stokes-Einstein	2	2	4	0.02	[0,3]	3	8	2	≤ 1	\checkmark	-	EXC	-
Diabetic [16]	2	9	4	0.02	[0,360]	9	2138	663	430	\checkmark	Z	EXC	-
Diabetic [17]	2	6	4	0.02	[0,360]	9	1804	443	410	\checkmark	Z	EXC	-
Watt governor [39]	4	1	5	1e-4	[0,15]	5	NR	-	-	-	-	EXC	-
Vehicle	4	3	6	0.1	[0,10]	9	85	40	4	\checkmark	S.F.	EXC	-
Angiogenesis [38]	2	1	12	1e-8	[0,2e-6]	4	34	0	12	-	-	EXC	-
Coll-avoid-2 [40]	2	3	12	0.01	[0,10]	3	27	8	3	\checkmark	-	EXC	-

http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/

Using Taylor Models in the Reachability Analysis of Non-linear Hybrid Systems

Verification of hybrid systems

- 2 Taylor model method
- Intersections of Taylor models and guards
- 4 Experimental results

- Taylor model flowpipe construction with varying orders and time steps.
- Split Taylor models according to equilibriums.
- Taylor model contraction for domains.
- Heuristics for choosing templates.

Thank you! Questions?