
Endpoint and Midpoint Interval Representations
Theoretical and Computational Comparison

Tomáš Dzetkulič

Institute of Computer Science
Academy of Sciences of the Czech Republic

5th of June 2012

1 / 14

Example
Task: Compute an interval enclosure for x = 1/15

Classical interval analysis:
x ∈ [6.66666666666666657415× 10−2, 6.66666666666666796193× 10−2]
Width: 1.387779× 10−17

Another possible representations:
6.66666666666666657415× 10−2 ± 9.252× 10−19

6.66666666666666657415× 10−2 + [0, 9.252× 10−19]

Representable numbers

Exact result

[x−e,x+e] interval

[xlo,xhi] interval

6.66666666666666657415× 10−2 + [9.251× 10−19, 9.252× 10−19]
Width: < 10−30

2 / 14

Example
Task: Compute an interval enclosure for x = 1/15

Classical interval analysis:
x ∈ [6.66666666666666657415× 10−2, 6.66666666666666796193× 10−2]
Width: 1.387779× 10−17

Another possible representations:
6.66666666666666657415× 10−2 ± 9.252× 10−19

6.66666666666666657415× 10−2 + [0, 9.252× 10−19]

Representable numbers

Exact result

[x−e,x+e] interval

[xlo,xhi] interval

6.66666666666666657415× 10−2 + [9.251× 10−19, 9.252× 10−19]
Width: < 10−30

2 / 14

Example
Task: Compute an interval enclosure for x = 1/15

Classical interval analysis:
x ∈ [6.66666666666666657415× 10−2, 6.66666666666666796193× 10−2]
Width: 1.387779× 10−17

Another possible representations:
6.66666666666666657415× 10−2 ± 9.252× 10−19

6.66666666666666657415× 10−2 + [0, 9.252× 10−19]

Representable numbers

Exact result

[x−e,x+e] interval

[xlo,xhi] interval

6.66666666666666657415× 10−2 + [9.251× 10−19, 9.252× 10−19]
Width: < 10−30

2 / 14

Example
Task: Compute an interval enclosure for x = 1/15

Classical interval analysis:
x ∈ [6.66666666666666657415× 10−2, 6.66666666666666796193× 10−2]
Width: 1.387779× 10−17

Another possible representations:
6.66666666666666657415× 10−2 ± 9.252× 10−19

6.66666666666666657415× 10−2 + [0, 9.252× 10−19]

Representable numbers

Exact result

[x−e,x+e] interval

[xlo,xhi] interval

6.66666666666666657415× 10−2 + [9.251× 10−19, 9.252× 10−19]
Width: < 10−30

2 / 14

Interval Types

Let Ω be the set of numbers representable on digital computer

We consider four kinds of intervals:

1. [xlo , xhi] such that xlo , xhi ∈ Ω

2. [x − e, x + e] such that x , e ∈ Ω

3. [x − elo , x + ehi] such that x , elo , ehi ∈ Ω; elo , ehi >= 0

4. [x − elo , x + ehi] such that x , elo , ehi ∈ Ω

Assumptions: intervals are narrow and the entire mantissa is used

⊕,⊗ are round to nearest, ties to even addition and multiplication

+,+ denote operations rounded up/down

3 / 14

Interval Types

Let Ω be the set of numbers representable on digital computer

We consider four kinds of intervals:

1. [xlo , xhi] such that xlo , xhi ∈ Ω

2. [x − e, x + e] such that x , e ∈ Ω

3. [x − elo , x + ehi] such that x , elo , ehi ∈ Ω; elo , ehi >= 0

4. [x − elo , x + ehi] such that x , elo , ehi ∈ Ω

Assumptions: intervals are narrow and the entire mantissa is used

⊕,⊗ are round to nearest, ties to even addition and multiplication

+,+ denote operations rounded up/down

3 / 14

Computing With Midpoint Intervals

In [1], Dekker showed that given a, b ∈ Ω
(a⊕ b)− (a + b) ∈ Ω and (a⊗ b)− (a× b) ∈ Ω
(if there was not overflow or underflow in multiplication)

i.e., the exact result of the arithmetic operation can be given as an
unevaluated sum of two floating point numbers

Let add(a, b) = (x , y) be a function that computes x , y such that
x = a⊕ b and a + b = x + y

We can then compute [x1 − e1, x1 + e1] + [x2 − e2, x2 + e2]:
1. (x , e3) := add(x1, x2)
2. e := e1+e2+|e3|
3. return[x − e, x + e]

4 / 14

Computing With Midpoint Intervals

In [1], Dekker showed that given a, b ∈ Ω
(a⊕ b)− (a + b) ∈ Ω and (a⊗ b)− (a× b) ∈ Ω
(if there was not overflow or underflow in multiplication)

i.e., the exact result of the arithmetic operation can be given as an
unevaluated sum of two floating point numbers

Let add(a, b) = (x , y) be a function that computes x , y such that
x = a⊕ b and a + b = x + y

We can then compute [x1 − e1, x1 + e1] + [x2 − e2, x2 + e2]:
1. (x , e3) := add(x1, x2)
2. e := e1+e2+|e3|
3. return[x − e, x + e]

4 / 14

Computing With Midpoint Intervals

In [1], Dekker showed that given a, b ∈ Ω
(a⊕ b)− (a + b) ∈ Ω and (a⊗ b)− (a× b) ∈ Ω
(if there was not overflow or underflow in multiplication)

i.e., the exact result of the arithmetic operation can be given as an
unevaluated sum of two floating point numbers

Let add(a, b) = (x , y) be a function that computes x , y such that
x = a⊕ b and a + b = x + y

We can then compute [x1 − e1, x1 + e1] + [x2 − e2, x2 + e2]:
1. (x , e3) := add(x1, x2)
2. e := e1+e2+|e3|
3. return[x − e, x + e]

4 / 14

Addition With Huge Magnitude Difference

Example: (1.3) + (1.4× 10−50)
Exact result mantissa is long (ones in the beginning and in the end)

In classical interval analysis one of the interval bounds changes to
next floating point number
The error introduced is ε (2−52)

In intervals of the second kind, only the smaller term is added to
error
The error introduced is thus of the magnitude of the smaller term

→ In case small intervals are often added to our interval, the use
of second interval kind has a huge advantage over the classical
interval

5 / 14

Addition With Huge Magnitude Difference

Example: (1.3) + (1.4× 10−50)
Exact result mantissa is long (ones in the beginning and in the end)

In classical interval analysis one of the interval bounds changes to
next floating point number
The error introduced is ε (2−52)

In intervals of the second kind, only the smaller term is added to
error
The error introduced is thus of the magnitude of the smaller term

→ In case small intervals are often added to our interval, the use
of second interval kind has a huge advantage over the classical
interval

5 / 14

Addition With Huge Magnitude Difference

Example: (1.3) + (1.4× 10−50)
Exact result mantissa is long (ones in the beginning and in the end)

In classical interval analysis one of the interval bounds changes to
next floating point number
The error introduced is ε (2−52)

In intervals of the second kind, only the smaller term is added to
error
The error introduced is thus of the magnitude of the smaller term

→ In case small intervals are often added to our interval, the use
of second interval kind has a huge advantage over the classical
interval

5 / 14

Addition With Medium Magnitude Difference
Example: (1.3) + (1.4× 10−10)
Exact result mantissa is longer than allowed by the standard
→ rounding occurs

In classical interval analysis the bounds of exact result can lie
anywhere in between of two representable numbers
The expected error introduced is ε

In intervals of the second kind, the expected magnitude of e3 is ε/4

exact result

e_3

In intervals of the second kind, the expected error introduced is ε/2

For multiplication, the same observations are valid

6 / 14

Addition With Medium Magnitude Difference
Example: (1.3) + (1.4× 10−10)
Exact result mantissa is longer than allowed by the standard
→ rounding occurs

In classical interval analysis the bounds of exact result can lie
anywhere in between of two representable numbers
The expected error introduced is ε

In intervals of the second kind, the expected magnitude of e3 is ε/4

exact result

e_3

In intervals of the second kind, the expected error introduced is ε/2

For multiplication, the same observations are valid

6 / 14

Addition With Medium Magnitude Difference
Example: (1.3) + (1.4× 10−10)
Exact result mantissa is longer than allowed by the standard
→ rounding occurs

In classical interval analysis the bounds of exact result can lie
anywhere in between of two representable numbers
The expected error introduced is ε

In intervals of the second kind, the expected magnitude of e3 is ε/4

exact result

e_3

In intervals of the second kind, the expected error introduced is ε/2

For multiplication, the same observations are valid
6 / 14

Addition With No Magnitude Difference

Example: (1.3) + (1.4)
Exact result mantissa is one bit longer than allowed

In classical interval analysis the bounds of exact result are
representable with the probability 0.5
The expected error introduced is ε/2

In intervals of the second kind, e3 is ε/2 with the probability 0.5

In intervals of the second kind, the expected error introduced is ε/2

7 / 14

Addition With No Magnitude Difference

Example: (1.3) + (1.4)
Exact result mantissa is one bit longer than allowed

In classical interval analysis the bounds of exact result are
representable with the probability 0.5
The expected error introduced is ε/2

In intervals of the second kind, e3 is ε/2 with the probability 0.5

In intervals of the second kind, the expected error introduced is ε/2

7 / 14

The Effect of Rounding To Nearest

In previous example, result was one bit longer than allowed

Either:

1. last bit was zero and there was no rounding

2. there was a tie in rounding

The result of round to nearest, ties to even rounding mode has
zero last mantissa bit

It is more likely that the result of a succesive operation with such a
number is in Ω

Example: (a+b)+(c+d)

This effect does not affect intervals of the first kind, since there is
never a tie in a directed rounding

8 / 14

The Effect of Rounding To Nearest

In previous example, result was one bit longer than allowed

Either:

1. last bit was zero and there was no rounding

2. there was a tie in rounding

The result of round to nearest, ties to even rounding mode has
zero last mantissa bit

It is more likely that the result of a succesive operation with such a
number is in Ω

Example: (a+b)+(c+d)

This effect does not affect intervals of the first kind, since there is
never a tie in a directed rounding

8 / 14

The Effect of Rounding To Nearest

In previous example, result was one bit longer than allowed

Either:

1. last bit was zero and there was no rounding

2. there was a tie in rounding

The result of round to nearest, ties to even rounding mode has
zero last mantissa bit

It is more likely that the result of a succesive operation with such a
number is in Ω

Example: (a+b)+(c+d)

This effect does not affect intervals of the first kind, since there is
never a tie in a directed rounding

8 / 14

The Effect of Rounding To Nearest

In previous example, result was one bit longer than allowed

Either:

1. last bit was zero and there was no rounding

2. there was a tie in rounding

The result of round to nearest, ties to even rounding mode has
zero last mantissa bit

It is more likely that the result of a succesive operation with such a
number is in Ω

Example: (a+b)+(c+d)

This effect does not affect intervals of the first kind, since there is
never a tie in a directed rounding

8 / 14

Addition Of Opposite Numbers

Example: (1.3) + (−1.4)
Result mantissa is shorter than allowed by the standard

There is no error introduced in classical interval analysis

There is a minor error introduced in the directed rounding of e1+e2

in intervals of the second kind

9 / 14

Implementation Pitfalls and Wide Intervals

Special care has to be taken for underflowing multiplication

Dekker algorithm does not work in that case

→ Underflowing results can be enclosed by 0± 10−200

In wide intervals as e, elo and ehi gain magnitude, additional error
is introduced in directed rounding of error

Multiplication of wide intervals [1− 1, 1 + 1]× [1− 1, 1 + 1] yields
suboptimal results ([1− 3, 1 + 3])

→ shift of the interval center is required in intervals of the second
kind

10 / 14

Implementation Pitfalls and Wide Intervals

Special care has to be taken for underflowing multiplication

Dekker algorithm does not work in that case

→ Underflowing results can be enclosed by 0± 10−200

In wide intervals as e, elo and ehi gain magnitude, additional error
is introduced in directed rounding of error

Multiplication of wide intervals [1− 1, 1 + 1]× [1− 1, 1 + 1] yields
suboptimal results ([1− 3, 1 + 3])

→ shift of the interval center is required in intervals of the second
kind

10 / 14

Implementation Pitfalls and Wide Intervals

Special care has to be taken for underflowing multiplication

Dekker algorithm does not work in that case

→ Underflowing results can be enclosed by 0± 10−200

In wide intervals as e, elo and ehi gain magnitude, additional error
is introduced in directed rounding of error

Multiplication of wide intervals [1− 1, 1 + 1]× [1− 1, 1 + 1] yields
suboptimal results ([1− 3, 1 + 3])

→ shift of the interval center is required in intervals of the second
kind

10 / 14

Implementation Pitfalls and Wide Intervals

Special care has to be taken for underflowing multiplication

Dekker algorithm does not work in that case

→ Underflowing results can be enclosed by 0± 10−200

In wide intervals as e, elo and ehi gain magnitude, additional error
is introduced in directed rounding of error

Multiplication of wide intervals [1− 1, 1 + 1]× [1− 1, 1 + 1] yields
suboptimal results ([1− 3, 1 + 3])

→ shift of the interval center is required in intervals of the second
kind

10 / 14

Rigorous Polynomial

1.
∑

i [ai , bi]x
i

2. (
∑

i aix
i) + [−e, e]

3. (
∑

i aix
i) + [−elo , ehi]

In [2], Neumaier says:
”I have not seen any convincing evidence that the use of floating
point numbers as coefficients is an essential improvement over
using narrow interval coefficients.”

In case an operation rounds a polynomial coefficient, the error
introduced depends also on the value of the monomial
If x ∈ [−1, 1] then x i ∈ [−1, 1] → the sign of the error does not
matter

In second and third case we need less memory to store polynomial

11 / 14

Rigorous Polynomial

1.
∑

i [ai , bi]x
i

2. (
∑

i aix
i) + [−e, e]

3. (
∑

i aix
i) + [−elo , ehi]

In [2], Neumaier says:
”I have not seen any convincing evidence that the use of floating
point numbers as coefficients is an essential improvement over
using narrow interval coefficients.”

In case an operation rounds a polynomial coefficient, the error
introduced depends also on the value of the monomial
If x ∈ [−1, 1] then x i ∈ [−1, 1] → the sign of the error does not
matter

In second and third case we need less memory to store polynomial

11 / 14

Rigorous Polynomial

1.
∑

i [ai , bi]x
i

2. (
∑

i aix
i) + [−e, e]

3. (
∑

i aix
i) + [−elo , ehi]

In [2], Neumaier says:
”I have not seen any convincing evidence that the use of floating
point numbers as coefficients is an essential improvement over
using narrow interval coefficients.”

In case an operation rounds a polynomial coefficient, the error
introduced depends also on the value of the monomial
If x ∈ [−1, 1] then x i ∈ [−1, 1] → the sign of the error does not
matter

In second and third case we need less memory to store polynomial

11 / 14

Rigorous Polynomial

1.
∑

i [ai , bi]x
i

2. (
∑

i aix
i) + [−e, e]

3. (
∑

i aix
i) + [−elo , ehi]

In [2], Neumaier says:
”I have not seen any convincing evidence that the use of floating
point numbers as coefficients is an essential improvement over
using narrow interval coefficients.”

In case an operation rounds a polynomial coefficient, the error
introduced depends also on the value of the monomial
If x ∈ [−1, 1] then x i ∈ [−1, 1] → the sign of the error does not
matter

In second and third case we need less memory to store polynomial

11 / 14

Computational Experiments

Test 1: Add 10000 random numbers from interval [−1.0, 1.0]
Test 2: Add 10000 random numbers from interval [0.5, 1.5]
Test 3: Multiply 10000 random numbers from distribution e [−1.0,1.0]

Test versions: Sequential and Divide&Conquer

[a, b] [a− e, a + e] [a− elo , a + ehi]

Test Error

1 Sequential 8.7× 10−11 4.4× 10−11 2.2× 10−11

1 D&C 1.1× 10−12 7.6× 10−13 3.8× 10−13

2 Sequential 8.3× 10−9 4.1× 10−9 2.1× 10−9

2 D&C 1.1× 10−11 8.9× 10−12 4.5× 10−12

3 1.6× 10−12 1.0× 10−12 5.0× 10−13

12 / 14

Computational Experiments

Test 1: Add 10000 random numbers from interval [−1.0, 1.0]
Test 2: Add 10000 random numbers from interval [0.5, 1.5]
Test 3: Multiply 10000 random numbers from distribution e [−1.0,1.0]

Test versions: Sequential and Divide&Conquer

[a, b] [a− e, a + e] [a− elo , a + ehi]

Test Error

1 Sequential 8.7× 10−11 4.4× 10−11 2.2× 10−11

1 D&C 1.1× 10−12 7.6× 10−13 3.8× 10−13

2 Sequential 8.3× 10−9 4.1× 10−9 2.1× 10−9

2 D&C 1.1× 10−11 8.9× 10−12 4.5× 10−12

3 1.6× 10−12 1.0× 10−12 5.0× 10−13

12 / 14

Arithmetic Operations Count

[a, b] [a− e, a + e] [a− elo , a + ehi]

Addition

Rounding mode change 2 2 2
Add 2 8 9
Time(109 operations) 40s 48s 51s

Multiplication

Rounding mode change 2 2 2
Add 0 14 17
Mul 8 9 18
Min/Max/Abs 6 3 7
Time(109 operations) 57s 63s 86s

13 / 14

Conclusion

We have compared three kinds of intervals

Intervals of second and third kind provide tighter enclosures for
narrow intervals

Computational experiments confirm the advantage of midpoint
intervals

Thank you for you attention.

14 / 14

Conclusion

We have compared three kinds of intervals

Intervals of second and third kind provide tighter enclosures for
narrow intervals

Computational experiments confirm the advantage of midpoint
intervals

Thank you for you attention.

14 / 14

Conclusion

We have compared three kinds of intervals

Intervals of second and third kind provide tighter enclosures for
narrow intervals

Computational experiments confirm the advantage of midpoint
intervals

Thank you for you attention.

14 / 14

[1] T. Dekker. A floating-point technique for extending the
available precision. Numerische Mathematik, 18:224—-242,
1971/72.

[2] A. Neumaier. Taylor forms–use and limits. Reliable Computing,
pages 43–79, 2003.

14 / 14

	Reference

