Universitat () —~CoM=
Rostock ! " Traditio et Innovatio Chair of Mechatronics

Interval-Based Model-Predictive Control
for Uncertain Dynamic Systems with
Actuator Constraints

SWIM 2012: Small Workshop on Interval Methods
Oldenburg, Germany
06 June, 2012

Andreas Rauh, Julia Kersten, Thomas Dotschel, Harald Aschemann

Chair of Mechatronics
University of Rostock, Germany



Slide 1/ 31 Andreas Rauh et al. Interval-Based Model-Predictive Control for Uncertain Dynamic Systems with Actuator Constraints

Contents

e Tracking control and stabilization of desired operating points for control
systems with uncertainties

e Different control methodologies

— Feedback linearizing control laws

— Exploitation of differential flatness

— Sliding mode control

— Classical model-predictive control
e Model-predictive control for uncertain systems
e |llustrative example: Trajectory tracking, overshoot prevention, path following
e Model-predictive control for SOFC models with uncertainties

e Detection of overestimation in interval-based predictive control laws

e Conclusions and outlook



Slide 2/ 31 Andreas Rauh et al. Interval-Based Model-Predictive Control for Uncertain Dynamic Systems with Actuator Constraints

Tracking Control for Continuous-Time Dynamical
Systems

Consider a dynamical system with

e the state equations x(t) =f (x(¢t),p(t),u(t),t)

e the output y (t) = g (x(t),u(t)), for example, measured data h (-)
e the desired output trajectory yg (¢)

control law plant sensor characteristics
W
—» . u . xr y
u (X, w) | x=f(x,p,u,t) || y=h(x,u,q,t) -
P
S . observer for
X B EE—
— state
. -t
reconstruction
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Tracking Control for Continuous-Time Dynamical
Systems

Consider a dynamical system with

e the state equations x(t) =f (x(¢t),p(t),u(t),t)

e the output y (t) = g (x(t),u(t)), for example, measured data h (-)
e the desired output trajectory yg (¢)

control law plant sensor characteristics
W
—» . u . xr y
u (X, w) | x=f(x,p,u,t) || y=h(x,u,q,t) -
P
S . observer for
X B EE—
— state
. -
reconstruction

Necessity for state/ output feedback to prevent the violation of feasibility
constraints in the case of parameter uncertainties as well as measurement and
state reconstruction errors.
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Tracking Control for Differentially Flat Systems
Differential Flatness of Nonlinear Dynamical Systems x (t) = f (x () ,u (%))

A dynamical system is called differentially flat, if flat outputs

y:y(x,u,ﬁ.,...,u(o‘))

exist such that

(i) all system states x and all inputs u can be expressed as functions of the flat
outputs and their time derivatives:

X:X(y,y,...,y(ﬁ)) and u:u(y,y,...,ywH))

(ii) the flat outputs y are differentially independent, i.e., they are not coupled by
differential equations.

Note:

(a) If (i) is fulfilled, (ii) is equivalent to dim (u) = dim (y).

(b) The flat outputs y need not be the physical outputs of the dynamical system.
(c) For linear systems, differential flatness is equivalent to controllability.
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Tracking Control for Differentially Flat Systems
Differential Flatness of Nonlinear Dynamical Systems x () = f (x(t),u(t))

A dynamical system is called differentially flat, if flat outputs

y:y(x,u,il,...,u(o‘))

exist such that

(i) all system states x and all inputs u can be expressed as functions of the flat
outputs and their time derivatives:

X:X<y,y,...,y(5)) and u:u(y,y,...,y(ﬁﬂ))

(ii) the flat outputs y are differentially independent, i.e., they are not coupled by
differential equations.

One possibility to solve the tracking control task is by specifying the desired
system output as a time-dependent algebraic constraint to a set of ordinary
differential equations or differential-algebraic equations.
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Tracking Control for Differentially Flat Systems

e Guaranteed stabilization of the error dynamics by interval evaluation of suitable
Lyapunov functions to account for uncertainties

e Transformation of the state equations into nonlinear controller normal form:
overcompensation of uncertainties

e Sliding mode control procedures, e.g. evaluated by means of interval analysis:
see previous presentation

e Alternatively: Exploitation of inherent robustness properties of model-predictive
control procedures
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Tracking Control for Differentially Flat Systems

e Guaranteed stabilization of the error dynamics by interval evaluation of suitable
Lyapunov functions to account for uncertainties

e Transformation of the state equations into nonlinear controller normal form:
overcompensation of uncertainties

e Sliding mode control procedures, e.g. evaluated by means of interval analysis:
see previous presentation

e Alternatively: Exploitation of inherent robustness properties of model-predictive
control procedures

(Interval-based) Predictive control approaches do not require an analytic refor-
mulation of the state equations into a nonlinear controller normal form or into
an input-affine system representation.
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Tracking Control for Differentially Flat Systems

e Guaranteed stabilization of the error dynamics by interval evaluation of suitable
Lyapunov functions to account for uncertainties

e Transformation of the state equations into nonlinear controller normal form:
overcompensation of uncertainties

e Sliding mode control procedures, e.g. evaluated by means of interval analysis:
see previous presentation

e Alternatively: Exploitation of inherent robustness properties of model-predictive
control procedures

(Interval-based) Predictive control approaches do not require an analytic refor-
mulation of the state equations into a nonlinear controller normal form or into
an input-affine system representation.

The usage of algorithmic differentiation allows for direct treatment of nonlinear
system models.
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Sensitivity-Based Model-Predictive Control
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predicted output y(t) Uy —1 g
with correction of u(t :
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“~predicted output y(t)
without correction of w(t)
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Sensitivity-Based Model-Predictive Control

Ya(t)

Interval-Based Model-Predictive Control for Uncertain Dynamic Systems with Actuator Constraints

y(t) 4 u(t) A
predicted output (%) Up—1
with correction of wu(t) T
~ "~ predicted output y(t)
without correction of w(t)
Au,
¢ T o g — — -
t, by, t L, b, t

e Sensitivity analysis for both analysis and design of control laws

e Consider a finite-dimensional dynamical system x (t) = f (x (t),£) with the
state vector x € R™ (including observer state variables) and the parameter
vector £ € R™¢ (including the system parameters p and the control inputs u)

Compute piecewise constant control inputs u (¢) for each time interval
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Sensitivity Analysis of Dynamical Systems

e Sensitivity of the solution x (¢) to the set of ordinary differential equations
x (t) =f (x(t),&) with respect to a time-invariant parameter vector ¢

d (0x(t)\ Of(x(t),&) ox(t) Of (x(t),&)
dt( IE; )_ 0x ¢ " ¢,
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Sensitivity Analysis of Dynamical Systems

e Sensitivity of the solution x (¢) to the set of ordinary differential equations
x (t) =f (x(t),&) with respect to a time-invariant parameter vector ¢

d (0x(t)\ Of(x(t),&) ox(t) Of (x(t),&)
dt( IE; )_ 0x ¢ " ¢,

e New state vectors (x € R"z, £ € R™)

s; (t) := 822(75) cR"™ forall ¢=1,...,n¢
= AED0 () 0.0
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Sensitivity Analysis of Dynamical Systems

e Sensitivity of the solution x (¢) to the set of ordinary differential equations
x (t) =f (x(t),&) with respect to a time-invariant parameter vector ¢

d (0x(t)\ Of(x(t),&) ox(t) Of (x(t),&)
dt( IE; )_ 0x ¢ " ¢,

e New state vectors (x € R"z, £ € R™)

s; (t) := 822(75) cR"™ forall ¢=1,...,n¢
= AED0 () 0.0

e Initial conditions

_0x(0,p)
o 0g

s; (0) with s;(0) =0 if x(0) is independent of &;
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Sensitivity-Based Control Using Algorithmic
Differentiation (1)

e Define the control error

v+Np

J = Z D(y (ty) —ya(ty))

between the actual and desired system outputs y (¢) and y4 (¢), respectively, to
achieve accurate tracking control behavior

e Define the output y (¢) in terms of the state vector x (t) and the control u ()
(assumed to be piecewise constant for ¢, <t < t,11) according to

e Compute the differential sensitivity of J using algorithmic differentiation
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Sensitivity-Based Control Using Algorithmic
Differentiation (2)

e Correct the control input u(%,) according to

u(t,) =u(ty—1)+Au, with Au, =— 0J +-J
v) — v—1 v v — 6AU.V )

1

where Mt := (MIM) M7 is the left pseudo-inverse of M

e Compute the differential sensitivity of the error measure J

v+Np

07 'S~ (9D (8 (e w) ~ya(t)0x (6) | 0D (g% w) ~ya (1)
0Au, = 0x 0Au, 0Au,
with the property
8X (t,/_l) —0
0Au,

e Evaluate % and agi,, forx =x(t{,) andu=u(t,—1) + Au,, Au, =0
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Extensions to Sensitivity-Based Control of
Uncertain Systems — Algorithm

Stage 1:

e Allow for uncertainty in parameters and measurements

e Enclose time discretization errors in the computation of the control input

n
u(t,) =u(t,_1)+ Au, with Au, = —sup (( o1J] ) : [J])

0Au,
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Extensions to Sensitivity-Based Control of
Uncertain Systems — Algorithm

Stage 1:

e Allow for uncertainty in parameters and measurements

e Enclose time discretization errors in the computation of the control input

n
u(t,) =u(t,_1)+ Au, with Au, = —sup ((;A[{I]V) : [J])

Stage 2: Check for admissibility of the resulting solution with respect to

e state constraints

e input constraints
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Extensions to Sensitivity-Based Control of
Uncertain Systems — Algorithm

Stage 1:

e Allow for uncertainty in parameters and measurements

e Enclose time discretization errors in the computation of the control input

n
u(t,) =u(t,_1)+ Au, with Au, = —sup ((;A[{I]V) : [J])

Stage 2: Check for admissibility of the resulting solution with respect to

e state constraints

e input constraints

Stage 3: Adjust the control input if necessary
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Extensions to Sensitivity-Based Control of
Uncertain Systems — Details

e Quantify the worst-case overshoot over the prediction horizon ¢t € {t,, ; tVJer}:

A—yu::t [trr}?x . {0; sup([y (t)] —ya(t))}

e Evaluate worst-case bounds for the output y (%), i.e., y(¢t) € [y(t)] using
interval arithmetic techniques

e Adapt the control input according to

_|_
Au, = —sup ((;Abl;] ) : Ay,,)

e Re-investigate the admissibility of the control strategy using guaranteed interval
enclosures of the output trajectory
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Extensions to Sensitivity-Based Control of
Uncertain Systems — Example (1)

e Control of a double integrating plant

X (t) = [8 (1)] x(t)+[;] u(t)+[FOd] with m €[0.9; 1.1] , Fye[-0.1; 0.1]

e Definition of the desired output trajectory
ya(t) =z1a(t) =1—e¢""

with the initial state .
x(0)=|-1 0]
e Direct computation of a piecewise constant control with a time-invariant
step size t,11 —t, = 0.01 and N = 200
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Extensions to Sensitivity-Based Control of
Uncertain Systems — Example (2)

e Prevent overshooting the desired output trajectory y,(t) for all £ > 0 and all
possible parameter values m € [0.9 ; 1.1]

e Use measured state variables x; ,, and x5, during sensitivity computation

e Guaranteed admissibility of the solution in spite of bounded measurement errors

21(t) € Ty m(t) +[-0.01; 0.01]  2(t) € om(t) + [—0.01 ; 0.01]

Further algorithmic details:

— A. Rauh, J. Kersten, E. Auer, and H. Aschemann. Sensitivity Analysis for Reliable
Feedforward and Feedback Control of Dynamical Systems with Uncertainties. In Proc. of 8th
Intl. Conference on Structural Dynamics EURODYN 2011, Leuven, Belgium, 2011.

— A. Rauh, J. Kersten, E. Auer, and H. Aschemann. Sensitivity-Based Feedforward and
Feedback Control for Uncertain Systems. Computing, (2—4):357-367, 2012.
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Extensions to Sensitivity-Based Control of
Uncertain Systems — Example (3)

Result: Grid-based simulation of sensitivity-based approach without guaranteed
overshoot prevention

1.5/ T 30

Yya (1)
1.0 / =

¢
’
’
0.5 /
¢ ’
’
’

y(t), ya(t) —=

0.0"

—0.57

1. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
% 2 4 6 8 10 0 2 4 6 8 10

tins —> tins —*>
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Extensions to Sensitivity-Based Control of
Uncertain Systems — Example (4)

Result: Grid-based validation of sensitivity-based approach with guaranteed
overshoot prevention

1.57 T 3,

Ya (1)
1.0+ / _____________________________ S
/,”‘ 3

4
4
4
0.5 /
¢ ’
’
’

y(t), ya(t) —=

0.0"

—0.57

—1. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
O0 2 1 6 8 10 0 2 4 6 8 10

tins —> tins —*>
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Extension Towards Robust Path Following for
Uncertain Systems — Example (1)

Procedure: Simultaneous adaptation of the physical control inputs and the
desired state trajectory with u € [—0.5 ; 0.5]

Time-scaling by the piecewise constant parameter «,, as further control input with

ya) =ya(f)  and I= /O o(7)dr

T T 157
= o 1.0f
g E 0.5 ﬂf*
- = 0! )
0.5
1.0
100 05 10 15 20 25 30 120 05 10 15 20 25 30

tins —> tins —*>
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Extension Towards Robust Path Following for
Uncertain Systems — Example (2)

Procedure: Simultaneous adaptation of the physical control inputs and the
desired state trajectory with u € [—0.5 ; 0.5]

Time-scaling by the piecewise constant parameter «,, as further control input with

ya() =ya(f) and I= /0 o(7)dr

y(t), ya (t) —=

—0.5 ~1.0
~1.0 ‘ ‘ ‘ ‘ ‘ ‘ ~15 ‘ ‘ ‘ ‘ ‘ ‘
00 05 1.0 15 20 25 3.0 00 05 1.0 15 20 25 3.0

tins —*> tins —>
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Practical Application Scenario: Predictive
Temperature for Solid Oxide Fuel Cell Systems (1)

e Control-oriented thermal SOFC model: Semi-discretization inton, =L -M - N
finite volume elements

k=1,...N 7
lZ'jzlr-,M d 1’1’N/ // |
/ p Y |
i=1,.,L - l . |
;;/_/_L_ 7
|
i L, M, N
1,1,1 71, M1
| A
' _ 7system
L,1,1 : _7  boundary
________ 17

mass flow

e Introduction of the state vector x!' = [¥1 11, ..., 91 am.n] € R (piecewise
homogeneous temperature values)



Slide 19/ 31 Andreas Rauh et al. Interval-Based Model-Predictive Control for Uncertain Dynamic Systems with Actuator Constraints

Practical Application Scenario: Predictive
Temperature for Solid Oxide Fuel Cell Systems (2)

e ODE for the local temperature distribution in the stack module
Cijik Mgk - Vigk(t) = Cacighe(Dijrs t) (ﬁz‘,j—l,k(t) — ﬁi,j,k(t))
+ Ccc.iik(Di ik, t) - (ﬁi,j—l,k(t) — ﬁi,j,kz(t))

+ Quijk(t) + Qroijk(t) + Prigjn(t)

e Restriction to a system with n, = 3 states (for visualization purposes)

k
l g system boundary
Z . 1 K |
mAG,in<t>79AG(t) _____________ " ;mAG,out(t>791,3,1<t)
™ 31| Has 913,1; >
Mea 1n<t>790G (t> , /,-" mC’G,out<t) ) 9.1,3,1<t)
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Practical Application Scenario: Predictive
Temperature for Solid Oxide Fuel Cell Systems (3)

e Design of a predictive control procedure such that

— System inputs stay close to the desired set-point
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Practical Application Scenario: Predictive
Temperature for Solid Oxide Fuel Cell Systems (3)

e Design of a predictive control procedure such that

— System inputs stay close to the desired set-point
— Temperature remains close to the desired nominal operating point
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Practical Application Scenario: Predictive
Temperature for Solid Oxide Fuel Cell Systems (3)

e Design of a predictive control procedure such that

— System inputs stay close to the desired set-point
— Temperature remains close to the desired nominal operating point
— Local violations of the maximum admissible cell temperature are prevented

with certainty (in a rigorous formulation)
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Practical Application Scenario: Predictive
Temperature for Solid Oxide Fuel Cell Systems (3)

e Design of a predictive control procedure such that

— System inputs stay close to the desired set-point
— Temperature remains close to the desired nominal operating point
— Local violations of the maximum admissible cell temperature are prevented

with certainty (in a rigorous formulation)
— Variation rates of the physical system inputs do not violate given bounds (in

a weak formulation)
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Practical Application Scenario: Predictive
Temperature for Solid Oxide Fuel Cell Systems (3)

e Design of a predictive control procedure such that

— System inputs stay close to the desired set-point

— Temperature remains close to the desired nominal operating point

— Local violations of the maximum admissible cell temperature are prevented
with certainty (in a rigorous formulation)

— Variation rates of the physical system inputs do not violate given bounds (in
a weak formulation)

e Sensitivity-based manipulation of the supplied mass flow of cathode gas as
well as the temperature difference between the preheater and the inlet
gas manifold of the SOFC
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Practical Application Scenario: Predictive
Temperature for Solid Oxide Fuel Cell Systems (3)

e Design of a predictive control procedure such that

— System inputs stay close to the desired set-point

— Temperature remains close to the desired nominal operating point

— Local violations of the maximum admissible cell temperature are prevented
with certainty (in a rigorous formulation)

— Variation rates of the physical system inputs do not violate given bounds (in
a weak formulation)

e Sensitivity-based manipulation of the supplied mass flow of cathode gas as
well as the temperature difference between the preheater and the inlet
gas manifold of the SOFC

e Alternatively, the enthalpy flow into the SOFC stack module can be computed,
which has to be expressed by the physical inputs according to the presentation
Th. Dotschel et al.: Sliding Mode Control for Uncertain Thermal SOFC Models

with Physical Actuator Constraints
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Interval-Based Predictive Control (1)

Result: Cell temperature for the scalar system model (desired operating
temperature: 850 K, max. admissible temperature 880 K with varying properties of
the anode gas and the electric load)

without overshoot prevention with overshoot prevention
T 1000 T 1000

900 ¢ 900
M :ﬁ
g 8007 = 800
= 700 = 700!
> >

600 | 600 '

500 | 500 -

400 | 400 |

300 ‘ ‘ ‘ ‘ ‘ ‘ 300 ‘ ‘ ‘ ‘ ‘

0o 2 4 6 8 10 12 0 2 4 6 8 10 12

tin 103s —> tin 103s —>
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Interval-Based Predictive Control (2)

Result: Cell temperature for the scalar system model (desired operating
temperature: 850 K, max. admissible temperature 880 K with varying properties of
the anode gas and the electric load)

mass flow of cathode gas preheater temperature
T - T 1000
’ 900 |
L 16 e
&z | = 8007
Loo12] = 700
— I O
= Q |
A gl = 600
S f 500 ¢
S 400
|
0 ‘ ‘ ‘ ‘ ‘ ‘ 300 ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 0o 2 4 6 8 10 12

tin 103s —> tin 103s —*
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Interval-Based Predictive Control (3)

Result: Cell temperature for the system model with n, = 3 states (desired
operating temperature: 850 K, max. admissible temperature 880 K with varying
properties of the anode gas and the electric load)

Undesirable behavior after t = 11,000s can be predicted from simulations and
avoided by a suitable supervisory control for the remaining system inputs

without overshoot prevention with overshoot prevention
1000 1000
T 900 | T 900~ o
R ~<
g 800/ = 800°
= 700 = 700
> S
600 | 600
500 500 ¢ necessity for refined
| I optimality criterion in
400 400 prediction algorithm
300 ‘ ‘ ‘ ‘ ‘ ‘ 300 ‘ ‘ ‘ ‘ ‘
o 2 4 6 8 10 12 o 2 4 6 8 10 12

tin 103s —> tin 103s —*
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Derivation of a Physically-Motivated Criterion for
the Detection and Reduction of Overestimation (1)

e Prediction of the stack temperatures over the time horizon t € [t,, : ty+Np]

with a given number N, > 0 of prediction steps and the constant sampling
time T := t,/_|_1 — t,/

e Necessity to evaluate the solution to the differential equations specifying the
temperature variation rates vJ; ; 1.(t) with uncertain parameters and uncertain
initial conditions over the time horizon ¢ € [t,, ; ty+Np]

— Overestimation in the state enclosures can make the predictive control
procedure inefficient

e Energy-related criterion for the detection of overestimation

Byi=E(ty) =) cijk-mijk Pijr(ty)
1,7,k
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Derivation of a Physically-Motivated Criterion for
the Detection and Reduction of Overestimation (2)

e Variant 1: Direct evaluation of

Bui=E(ty) =) cijk-mijk Pijr(ty)

1,5,k
e Variant 2: Integral formulation
tu ty
E,=E,+ /E (r)dr = E, + / D ik Mg Vi ji(T) | dr
tl/ tl/ iaj7k

e In the absence of overestimation as well as discretization and rounding errors,
both variants yield identical results

e Generally, variant 2 yields tighter enclosures than variant 1
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Derivation of a Physically-Motivated Criterion for
the Detection and Reduction of Overestimation (3)

e Simplification for state-independent and time-invariant parameters c; ; ; and
m; ;. which are identical for all finite volume elements

e Modified formulation

— Variant 1: Direct evaluation of

B, =E(t,) = Z ik (tp)

i\j,k
— Variant 2: Integral formulation
t ty
E,=FE,+ /E (t)dr = FE, + / Z ﬁzjk(T) dr
i 7 ik

e Determine the offset E,, € [E,] on the basis of measured temperatures
(including measurement tolerances and estimation errors)
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Derivation of a Physically-Motivated Criterion for
the Detection and Reduction of Overestimation (4)

e Simplification for state-independent and time-invariant parameters c; ; ; and
m;_ ;. Which are identical for all finite volume elements

e Modified formulation

— Variant 1: Direct evaluation of

B, :=E(t,) =) ijxlt,)

ij,k
— Variant 2: Integral formulation
t, ty
E,=FE,+ /E (t)dr = E, + / Z ﬁwk(T) dr
i i \idik

e Reduced overestimation on variant 2 since the heat flow over boundaries
between neighboring finite volume elements cancels out exactly (energy
conservation: first law of thermodynamics!)
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Discrete-Time Formulation of the Predictive
Control Algorithm (1)

e Determine state enclosure for t =t,: 9; ;1 (t,) € [¥i .k (to)]

e Discrete-time evaluation of the state equations over the complete prediction
horizon [tu . t,,+Np}, > v

Dijik (tp) € [Dige (tu1)] + T {ﬁi,j,k (tu—l)} with  u =u(t,_1)

e Simultaneous evaluation of the performance criterion

e Evaluation of the corresponding sensitivities by means of algorithmic
differentiation
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Discrete-Time Formulation of the Predictive
Control Algorithm (2)

e Simultaneous evaluation of the energy-related overestimation criterion

— Variant 1: Direct evaluation for discrete-time state intervals

E.€ Y [9ix(ty)]

i,5,k

— Variant 2: Integral formulation

E, c [EM} = [E,] + SM: My {ﬁi,j,k(t;)}

n=v iajak

e As in the continuous-time case, variant 2 yields tighter enclosures do to
reduction of the wrapping effect (elimination of internal heat flow in the SOFC)
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Discrete-Time Formulation of the Predictive
Control Algorithm (3)

e Reduction of the conservativeness with respect to the maximum predicted
overshoot for t € [tu ; t,,+Np] at t =t~ by the following consistency test

— Subdivide [¥; ; r (t,+)] into subintervals [ﬁ;,j’k (tu*)} along the longest edge

— Evaluate
B, € [B] =) [0xt)]
i3,k

for all subintervals of the predicted state enclosure |¥; ; ()]
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Discrete-Time Formulation of the Predictive
Control Algorithm (3)

e Reduction of the conservativeness with respect to the maximum predicted
overshoot for t € [ty ; t,,+Np] at t =t~ by the following consistency test

— Subdivide [¥; ; r (t,+)] into subintervals [ﬁ;,j’k (tu*)} along the longest edge

E, e [B,] =) [¥,rt)]
ij,k
for all subintervals of the predicted state enclosure |¥; ; ()]

— Evaluate

e Classification of the resulting subintervals
— Guaranteed caused by overestimation if [E;/J N [Eu} = ()
- Undecided for [}] N |E,| # 0 and [E}] € | B,

— Consistent for [E/] C [Eu}
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Discrete-Time Formulation of the Predictive
Control Algorithm (3)

e Reduction of the conservativeness with respect to the maximum predicted
overshoot for t € [ty ; t,,+Np] at t =t~ by the following consistency test

— Subdivide [¥; ; r (t,+)] into subintervals [ﬁ;,j’k (tu*)} along the longest edge

E, e [B,] =) [¥,rt)]
ij,k
for all subintervals of the predicted state enclosure |¥; ; ()]

— Evaluate

e Classification of the resulting subintervals
— Guaranteed caused by overestimation if |E/ | N [Eu} =)
- Undecided for [}] N |E,| # 0 and [E}] € | B,

— Consistent for [E/] C [Eu}

e Re-evaluate [J] for the reduced predicted overshoot
— Perform the sensitivity-based control update as for the illustrative example
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Conclusions and Outlook on Future Work

e Framework for sensitivity-based open-loop and closed-loop control with real-life
applications

e Extension of sensitivity-based control to systems with interval uncertainties
—> Guarantee the compliance with state and control constraints

e Development of a general framework for interval arithmetic, sensitivity-based
model-predictive control
—> Problem-dependent definition of corresponding cost functions
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Conclusions and Outlook on Future Work

e Framework for sensitivity-based open-loop and closed-loop control with real-life
applications

e Extension of sensitivity-based control to systems with interval uncertainties
—> Guarantee the compliance with state and control constraints

e Development of a general framework for interval arithmetic, sensitivity-based
model-predictive control
—> Problem-dependent definition of corresponding cost functions

e Extension of sensitivity-based control to state and disturbance estimation
(duality of control and observer synthesis)

e Verification of (asymptotic) stability

e Gain scheduling for sliding mode control with interval uncertainties
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