An interval approach for stability analysis of nonlinear systems

L. Jaulin, F. Lebars ENSTA-Bretagne, LabSTICC.

http://www.ensta-bretagne.fr/jaulin/

1 Line following

Nominal vector field θ^*

$$\theta^* = -\frac{2.\gamma_{\infty}}{\pi}.atan\left(\frac{e}{r}\right)$$

 $\begin{array}{lll} \cos\left(\psi-\overline{\theta}\right)+\cos\zeta &< \ \mathbf{0} \Rightarrow \ \overline{\theta} \ \text{is unfeasible} \\ \text{In this case, take } \overline{\theta} &= \ \pi+\psi-\zeta.sign\left(e\right) \end{array}$

Polar projection strategy

Keep tack strategy: even if the route $\overline{\theta}$ is feasible, we keep the tack mode

Keep tack strategy:

$$\begin{cases} |e| < r \text{ and} \\ \cos(\psi - \varphi) + \cos \zeta < 0 \end{cases} \Rightarrow \overline{\theta} = \pi + \psi - \zeta.\operatorname{sign}(e)$$

•

Function
$$\overline{\theta}(e, \psi, \gamma_{\infty}, r, \zeta)$$

1 $\theta^* = -\frac{2 \cdot \gamma_{\infty}}{\pi} \cdot \operatorname{atan}\left(\frac{e}{r}\right)$ // nominal route
2 if $\cos(\psi - \theta^*) + \cos\zeta < 0$ // θ^* unfeasible
3 or $(|e| < r \text{ and } \cos\psi + \cos\zeta < 0)$ // line unfeasible
4 then $\overline{\theta} = \pi + \psi - \zeta \cdot \operatorname{sign}(e)$; // tack mode
5 else $\overline{\theta} = \theta^*$; // nominal route
6 end

Choose a frame $\mathcal{R}\left(\mathbf{a},\mathbf{i},j\right)$ based on the line.

Function
$$\theta$$
 (x, ψ , γ_{∞} , r, ζ)
1 $\theta^* = -\frac{2 \cdot \gamma_{\infty}}{\pi} \cdot \operatorname{atan}\left(\frac{x_2}{r}\right)$
2 if $\cos(\psi - \theta^*) + \cos\zeta < 0$
3 or ($|e| < r$ and ($\cos(\psi - \varphi) + \cos(\zeta) < 0$))
4 then $\overline{\theta} = \pi + \psi - \zeta \cdot \operatorname{sign}(x_2)$;
5 else $\overline{\theta} = \theta^*$;
6 end

The motion of the sailboat robot satisfies

$$\dot{\mathbf{x}} = \begin{pmatrix} \cos\left(\bar{\theta}\left(\mathbf{x},\psi\right) + w\right) \\ \sin\left(\bar{\theta}\left(\mathbf{x},\psi\right) + w\right) \end{pmatrix} \text{, with } w \in \left[w^{-},w^{+}\right],$$
 i.e.

$$\mathbf{\dot{x}}\in\mathbf{F}\left(\mathbf{x}
ight)$$

which is a differential inclusion.

2 V-stability

The system

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$

is Lyapunov-stable (1892) is there exists $V\left(\mathbf{x}
ight)\geq$ 0 such that

$$\dot{V}(\mathbf{x}) < 0 \text{ if } \mathbf{x} \neq \mathbf{0}.$$

 $V(\mathbf{x}) = 0 \text{ iff } \mathbf{x} = \mathbf{0}$

Definition. Consider a differentiable function $V(\mathbf{x})$. The system is V-stable if

$$\left(V\left(\mathbf{x}
ight) \geq \mathsf{0} \ \Rightarrow \ \dot{V}\left(\mathbf{x}
ight) < \mathsf{0}
ight) .$$

Theorem. If the system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is *V*-stable then

(i) $\forall \mathbf{x}(0), \exists t \geq 0$ such that $V(\mathbf{x}(t)) < 0$ (ii) if $V(\mathbf{x}(t)) < 0$ then $\forall \tau > 0, V(\mathbf{x}(t+\tau)) < 0$. Now,

$$\begin{pmatrix} V(\mathbf{x}) \ge \mathbf{0} \implies \dot{V}(\mathbf{x}) < \mathbf{0} \end{pmatrix} \Leftrightarrow \begin{pmatrix} V(\mathbf{x}) \ge \mathbf{0} \Rightarrow \frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) < \mathbf{0} \end{pmatrix} \Leftrightarrow \forall \mathbf{x}, \frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) < \mathbf{0} \text{ or } V(\mathbf{x}) < \mathbf{0} \\ \Leftrightarrow \forall \mathbf{x}, \min\left(\frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}), V(\mathbf{x})\right) < \mathbf{0} \\ \Leftrightarrow \forall \mathbf{x}, g(\mathbf{x}) < \mathbf{0} \\ \Leftrightarrow g^{-1}([\mathbf{0}, \infty]) = \emptyset.$$

Theorem. If

$$g(\mathbf{x}) = \min\left(\frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}), V(\mathbf{x})\right),$$

we have

$$g^{-1}([0,\infty[)=\emptyset \iff$$
 the system is V-stable.

3 Robust case

The state equation

 $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$

becomes a differential inclusion

 $\mathbf{\dot{x}}\in\mathbf{F}\left(\mathbf{x}
ight) .$

where ${\bf F}$ is a thick function.

Differential inclusion for the sailboat; $\zeta = \frac{\pi}{3}$ and $\gamma_{\infty} = \frac{\pi}{2}$.

Set inversion of thick functions. Given the thick function $\mathbf{F} : \mathbb{R}^n \to \mathcal{P}(\mathbb{R}^p)$ and a set $\mathbb{Y} \subset \mathbb{R}^p$, we define

$$egin{array}{rll} \overline{\mathrm{F}}^{-1}\left(\mathbb{Y}
ight) &=& \left\{ \mathrm{\mathbf{x}}\mid\mathrm{F}\left(\mathrm{\mathbf{x}}
ight)\subset\mathbb{Y}
ight\} \ \overline{\mathrm{F}}^{-1}\left(\mathbb{Y}
ight) &=& \left\{ \mathrm{\mathbf{x}}\mid\mathrm{F}\left(\mathrm{\mathbf{x}}
ight)\cap\mathbb{Y}
eq\emptyset
ight\} . \end{array}$$

Interval analysis can be used to solve this problem.

Example. Consider the thick function

$$F(x_1, x_2) = (x_1 - [-1, 1])^2 + (x_2 - [-2, 2])^2$$

= $\{(x_1 - a)^2 + (x_2 - b)^2, a \in [-1, 1], b \in [-2, 2]\}.$

For $\mathbb{Y}=$ [10, 100], we get the following picture for $\underline{F}^{-1}\left(\mathbb{Y}\right)$ and $\overline{F}^{-1}\left(\mathbb{Y}\right)$.

Lower and upper set inversion of a thick function.

Theorem. If $G(\mathbf{x})$ is the thick function defined by

$$G(\mathbf{x}) = \min\left(\frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) \cdot \mathbf{F}(\mathbf{x}), V(\mathbf{x})\right)$$

We have

(a)
$$\overline{G}^{-1}([0,\infty[)=\emptyset \Rightarrow \dot{\mathbf{x}} \in \mathbf{F}(\mathbf{x}) \text{ is } V \text{-stable}$$

(b) $\underline{G}^{-1}([0,\infty[)\neq\emptyset \Rightarrow \dot{\mathbf{x}} \in \mathbf{F}(\mathbf{x}) \text{ is } V \text{-unstable.}$

4 Parametric case

Consider

$$\mathbf{\dot{x}} \in \mathbf{F}(\mathbf{x}, \mathbf{p})$$
 .

We want to characterize the set $\mathbb P$ of all $\mathbf p$ such that the system is V-stable.

Define the thick function

$$G_{\mathbf{p}}(\mathbf{x}) = \min \left(\frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) \cdot \mathbf{F}(\mathbf{x}, \mathbf{p}), V(\mathbf{x}) \right)$$
$$= \left\{ \min \left(\frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) \cdot \mathbf{f}, V(\mathbf{x}) \right), \mathbf{f} \in \mathbf{F}(\mathbf{x}, \mathbf{p}) \right\}.$$

We have

(a)
$$\overline{G}_{\mathbf{p}}^{-1}([0,\infty[)=\emptyset \Rightarrow \mathbf{p}\in\mathbb{P})$$

(b) $\underline{G}_{\mathbf{p}}^{-1}([0,\infty[)\neq\emptyset \Rightarrow \mathbf{p}\notin\mathbb{P})$.

As a consequence, if

$$\mathbb{P}^{-} = \left\{ \mathbf{p}, \overline{G}_{\mathbf{p}}^{-1} \left([\mathbf{0}, \infty[) = \emptyset \right\} \right.$$
$$\mathbb{P}^{+} = \left\{ \mathbf{p}, \underline{G}_{\mathbf{p}}^{-1} \left([\mathbf{0}, \infty[) = \emptyset \right\} \right.$$

then

$$\mathbb{P}^{-} \subset \mathbb{P} \subset \mathbb{P}^{+}.$$

5 Test-case

Assumption. The closed loop system satisfies

$$\dot{\mathbf{x}} = \begin{pmatrix} \cos\left(\bar{\theta} + w\right) \\ \sin\left(\bar{\theta} + w\right) \end{pmatrix}, \text{ with } \bar{\theta} = \bar{\theta}\left(\mathbf{x}, \psi, \gamma_{\infty}, r, \zeta\right), w \in \mathbb{W}.$$

Property 1. If $|e(\mathbf{x})| < r_{\max}$ then, it will be the case for ever.

Property 2. If $|e(\mathbf{x})| > r_{\max}$ then $|e(\mathbf{x})|$ will decrease until $|e(\mathbf{x})| < r_{\max}$.

Property 3. The course should be feasible, i.e.,

$$\cos\left(\psi-\overline{ heta}
ight)+\cos\zeta\geq 0.$$

Property 4. The robot always moves toward the right direction, i.e., $\dot{x}_1 > 0$.

Case 1. To take into account Properties 1,2 and 3. Take $V(\mathbf{x}) = x_2^2 - r_{\max}^2$.

The parameter vector is $\mathbf{p} = (\gamma_{\infty}, \psi)$.

Differential inclusion for the controlled sailboat;

$$\zeta = \frac{\pi}{3}, \ \gamma_{\infty} = \frac{\pi}{2}.$$

Case 2. Assume that we want also that $\dot{x}_1 > 0$. Moreover, $\zeta = \frac{\pi}{6}$, $\mathbb{W} = \pm 5^{\circ}$.

Differential inclusion for the sailboat; $\zeta=\frac{\pi}{6},\;\gamma_{\infty}=\frac{\pi}{8},[w]=\pm5^{\circ}$