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1 Introduction

HySAT is a satisfiability checker for Boolean combinations of arithmetic constraints over real— and
integer—valued variables. A peculiarity of HySAT, which sets it apart from many other solvers, is
that it is not limited to linear arithmetic, but can also deal with nonlinear constraints involving
transcendental functions.

The algorithmic core of HySAT is the iSAT algorithm, a tight integration of recent SAT solving
techniques with interval-based arithmetic constraint solving. For technical details, see [?]. HySAT
is the successor tool and shares the name of the solver described in [?]. Do not mix up the two.

A Linux binary of HySAT is available at http://hysat.informatik.uni-oldenburg.de. On
the website you will also find some sample input files and this manual. HySAT is an ongoing
project. Please check back regularly for updated versions of the tool.

This document shall provide a brief introduction into the usage of HySAT. Unfortunately, it is
still far from being complete. If your question is not answered here, send an email to
christian.herde@informatik.uni-oldenburg.de.

2 Modes of operation

HySAT is a command-line tool which has two different modes of operation: It can be used a) as a
satisfiability checker for a single formula, which in particular can seek an optimal solution to the
given formula, and b) for finding a trace of a hybrid system via bounded model checking (BMC).
The usage of HySAT is best illustrated by means of examples.

2.1 Single formula mode

We first explain the use of HySAT as satisfiability checker, thereafter how to solve optimization
problems with it.

2.1.1 (Un)satisfiability checking

Assume you want to find a pythagorean triple, i.e. a triple (a, b, ¢) of integer values which satisfies
a? +b?> = ¢®. To use HySAT for this purpose, create a file, say samplel.hys, containing the
following lines (without the line numbers).

1 DECL

2 -- The range of each wariable has to be bounded.
3 int [1, 100] a, b, c;

4

5 EXPR

6 -- Constraint to be solved.

7 a*a + b*xb = c*c;



In single formula mode the input file has two sections: The first section, starting with the
keyword DECL, contains declarations of all variables occuring in the formula to be solved. The
second section, starting with EXPR, contains the formula itself, the latter in this example consisting
of a single arithmetic constraint only. After calling 'hysat samplel.hys’, HySAT generates the
output displayed below!, reporting a = 80,b = 60, and ¢ = 100 as a satisfying valuation.

# This is HySAT 0.8.5, compiled on Sat Nov 14, 2009.

Reading input file ’samplel.hys’.
Preprocessing input formulae.

SOLVING:
input formula
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RESULT :
candidate solution box found
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SOLUTION :
a (int):
@0: [51, 51]
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b (int):
@0: [68, 68]
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c (int):
@0: [85, 85]
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You might have noticed, that HySAT writes the result in form of intervals instead of single
values. This is due to the fact that calculations in HySAT are carried out in interval arithmetic.
In contrast to the examples presented in this brief introduction, the solution intervals computed
by HySAT will in general be non-point intervals.

2.1.2 Optimization

In single formula mode, HySAT can also be used to determine a solution which minimizes the
value of an arbitrary variable occuring in the input formula. Internally, this is achieved by calling
the satisfiability checker within a binary search scheme. To compute, for example, a pythagorean
triple which minimized the value of variable ¢, call ’hysat --minimize ¢ samplel.hys’, which
will generate the following output:

# This is HySAT 0.8.5, compiled on Sat Nov 14, 2009.

Reading input file ’samplel.hys’.
Preprocessing input formulae.

MINIMIZING:
value of variable ’c’
objective value: 85
objective value: 34
objective value: 15
objective value: 5
objective value: 5
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14 SOLUTION :

15 a (int):

16 @0: [3, 3]
17

18 b (int):

19 @0: [4, 4]
20

21 c (int):

22 @o0: [5, 5]

That is, the optimum is attained at ¢ = 5.
Since the input formula may be built from Boolean, integer, and real-valued variables using
all standard Boolean and arithmetic operations, the class of optimization problems which can

1For brevity, we have omitted the sections 'SETTINGS’ and ’STATISTICS’ of the tool output here and in the
following examples.



be solved by HySAT is very general and in particular includes nonlinear, nonconvex, and mixed—
integer problems.

Being based on interval propagation, HySAT will find the optimum also in pathological cases.
Consider, e.g., the function y = 2 — 0.3¢~(@(*=2)” for a = 200 over the interval [—200,200]%. A
rough plot of the function using gnuplot, for example, seems to indicate that the global optimum
is at (z,y) = (0,0). A closer inspection of the graph however reveals that the function has a sharp
bend in the interval [0.48,0.52] which contains the global miminum (z,y) ~ (0.5, —0.05). Being
run on the input file

DECL
define a = 200;
float [-a, al x, y;

EXPR
y = x72 - 0.3 * exp(-(a*(x - 0.5))"2);

o A W N e

(using command line option —-minimize y), HySAT encloses this mimimum correctly:

# This is HySAT 0.8.5, compiled on Sat Nov 14, 2009.

Reading input file ’sample2.hys’.
Preprocessing input formulae.

MINIMIZING:

value of variable ’y’

objective value: 2.70385
objective value: 1.10819
objective value: 0.268511
objective value: 0.00964123
objective value: -0.0460648
objective value: -0.0498516
objective value: -0.0500207
objective value: -0.0500208
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SOLUTION :
x (float):
@0: [0.49995866529807836409, 0.4999586656049818667]

I
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y (float):
@0: [-0.050020831307689694878, -0.050020830695775175823]

N
]

Note, by the way, that the declaration section of the input file contains a definition of a symbolic
constant (@ = 200), which thereafter can be used in declarations and constraints.
2.2 Bounded model checking mode

Bounded model checking (BMC) aims at checking whether a system has a run of bounded length
k which

e starts in an initial state of the system,
e obeys the system’s transition relation and
e ends in a state in which a certain (desired or undesired) property holds.

The idea of BMC is to construct a formula which is satisfiable if and only if a trace with above
properties exists. In case of satisfiability, any satisfying valuation of this formula corresponds to
such a trace.

For specifying BMC tasks iSAT has a second input file format which consists of four parts:

e DECL: As above, this part contains declarations of all variables. Furthermore, you can define
symbolic constants in this section (see the definition of f in line 2 in the example below).

2This example was taken from the lecture ‘Validated Numerics’ by Warwick Tucker, Uppsala University.



e INIT: This part is a formula describing the initial state(s) of the system to be investigated.
In the example below, x is initialized to 0.6, and jump is set to false, since this is the only
valuation which satisfies the constraint ! jump, where "!’ stands for 'not’.

e TRANS: This formula describes the transition relation of the system. Variables may occur in
primed or unprimed form. A primed variable represents the value of that variable in the
successor step, i.e. after the transition has taken place. Thus, line 14 of the example states,
that if jump is false in the current state, then the value of x in the next state is given by
its current value plus 2.

The semicolon which terminates each constraint can be read as an AND-operator. Hence,
TRANS is a conjunction of three constraints.

e TARGET: This formula characterises the state(s) whose reachability is to be checked. In the
example below, we want to find out if a state is reachable in which x > 3.5 holds.

1 DECL

2 define f = 2.0;

3 float [0, 1000] x;
4 boole jump;

5

6 INIT

7 x = 0.6;

8 ! jump;

9

10 TRANS

-
-

jump’ <-> !jump;

e
w N

jump -> f * x’ = x;
'jump -> x’ = x + 2;

o
IS

TARGET
x > 3.5;

=
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When calling HySAT with the input file above, it successively unwinds the transition relation
k=0,1,2,... times, conjoins the resulting formula with the formulae describing the initial state
and the target states, and thereafter solves the formula thus obtained.

From the tool ouput below you can see that for k = 0,1, 2, 3, 4, the formulae are all unsatisfiable,
for k = 5 however, a solution is found. Note, that HySAT reports the values of jump and x for
each step k of the system. After the last transition, as required, x > 3.5 holds.

1 # This is HySAT 0.8.5, compiled on Sat Nov 14, 2009. 29 SOLVING:

2 30 k = 4

3 Reading input file ’sample3.hys’. 31

4 Normalizing input formulae. 32 RESULT:

5 33 unsatisfiable

6 SOLVING: 34

7 k=20 35 SOLVING:

8 36 k =5

9 RESULT: 37

10 unsatisfiable 38 RESULT:

11 39 candidate solution box found
12 SOLVING: 40

13 k=1 41 SOLUTION :

14 42 jump (boole):

15 RESULT: 43 @0: [0, O]

16 unsatisfiable 44 e1: [1, 1]

17 45 e2: [0, 0]

18  SOLVING: 46 @3: [1, 1]

19 k=2 47 @4: [0, O]

20 48 e5: [1, 1]

21 RESULT: 49

22 unsatisfiable 50 x (float):

23 51 @0: [0.6, 0.6]
24 SOLVING: 52 e1: [2.6, 2.6]
25 k =3 53 @2: [1.3, 1.3]
26 54 @3: [3.3, 3.3]
27  RESULT: 55 @4: [1.65, 1.65]
28 unsatisfiable 56 @5: [3.65, 3.65]



3 Input language: types, operators and expressions

3.1 Types

e Types supported by HySAT are float, int and boole.

e Boolean variables are identified with integer variables of range [0, 1].

e When declaring a float or an integer variable you have to specify the range of this variable.
Due to the internal working of HySAT these ranges have to be bounded, i.e. you have to
specify a lower and an upper bound. To reduce solving time, ranges should be chosen as
small as possible.

e Integer and float variables can be mixed within the same arithmetic constraint.

3.2 Operators

e Boolean operators:

Operator | Type | Num. Args. | Meaning
and infix 2 conjunction
; infix 2 alternative notation for ’and’, cf. precedence rules, however
or infix 2 disjunction
nand infix 2 negated and
nor infix 2 negated or
xor infix 2 exclusive or
nxor infix 2 negated xor, i.e. equivalence
<=> infix 2 alternative notation for 'nxor’
impl infix 2 implication
-> infix 2 alternative notation for ’impl’
not prefix 1 negation
! prefix 1 alternative notation for 'not’
e Arithmetic operators:
Operator | Type | Num. Args. | Meaning
+ infix lor2 unary ’plus’ and addition
- infix lor2 unary 'minus’ and subtraction
* infix 2 multiplication
abs prefix 1 absolute value
min prefix 2 minimum
max prefix 2 maximum
exp prefix 1 exponential function
sin prefix 1 sine (unit: radian)
cos prefix 1 cosine (unit: radian)
pow prefix 2 nth power, n (2nd argument) has to be a positive integer
- infix 2 alternative notation for 'pow’, infix however
nrt prefix 2 nth root, n (2nd argument) has to be a positive integer

Operators abs, min, max, exp, sin, cos, pow, and nrt have to be called with their arguments
being separated by commas and enclosed in brackets. Example: pow(x, 3)

e Relational operators:

>, >= <, <=, = I= (all infix)

e Precedence of operators: The following list shows all operators ordered by their precedence,
starting with the one that binds strongest. You can use brackets in the input file to modify
the order of term evaluation induced by these precedence rules.




unary not, ~ (infix version of 'pow’)
unary plus, unary minus
multiplication

plus, minus

abs, min, max, exp, sin, cos, pow, nrt
> >= < <= = 1=

and, nand

XOr, nXor

or, nor

impl

v VvV Vv VvV VvV VvV VvV VvV Vv Vv V

’

3.3 Expressions

e Let a, b be Boolean variables and x, y be float variables. Examples for expressions are:

D x*y+2x% (x-4)>5-2x% (x-4)]
> (x > 20 and !b) xor a

>b<>{3.18 % (-5 -y x*xyx*xy) =7}

> sin(x + max(3, y)) < 0.4

> abs(nrt(x”2 + y°2), 2)) <= 10.3

e Note that the individual constraints occuring in a formula have to be conjoined using the
’;-operator. In addition, the last line of each formula has to be terminated with a semicolon.

4 How it works

To be able to interprete HySAT’s output you need some basic understanding of how the tool works
internally. HySAT performs a backtrack search to prune the search space until it is left with a
‘sufficiently small’ portion of the search space for which it cannot derive any contradiction with
respect to the constraints occuring in the input formula.

Initially, the search space consists of the cartesian product of the ranges of all variables occuring
in the formula to be solved. Just like an ordinary (purely Boolean) SAT solver, HySAT operates
by alternating between two steps:

e The decision step involves selecting a variable ‘blindly’, splitting its current interval (e.g. by
using the midpoint of the interval as split point) and temporarily discarding either the lower
or the upper half of the interval from the search. The solver will ignore the discarded part
of the search space until the decision is undone by backtracking.

e Each decision is followed by a deduction step in which the solver applies a set of deduction
rules that explore all the consequences of the previous decision. Informally speaking, the
deduction rules carve away portions of the search space that contain non-solutions only.

Assume, for example, that the input formula consists of the single constraint = -y = 8 and
initially = € [2,4] and y € [2,4] holds. The solver might now decide to split the interval of = by
assigning the new lower bound x > 3 to z. In the subsequent deduction phase, the solver will
deduce that, due to the increased lower bound of z, the upper bound of y can be reduced to %
because for all other values of y the constraint x -y = 8 is violated. After asserting y < %, thereby

contracting the search space to [3,4] x [2, 2], no further deductions are possible, and the solver



goes on with taking the next decision. Deduction may also yield a conflict, i. e. a variable whose
interval is empty, indicating the need to backtrack.

To enforce termination of the algorithm, the solver only selects a variable = for splitting if the
width T — z of its interval [z,T] is above a certain threshold e, which we call minimal splitting
width. Furthermore, the solver discards a deduced bound if it only yields a comparatively small
progress with respect to the bound already in place. More precisely, a deduced lower (upper)
bound by is ignored if |b. — bg| < J, where b, is the current lower (upper) bound of the respective
variable and § is a parameter which we call minimal bound delta. The values of € and § can be set
with the command-line options —-msw and --mbd. Their default values are ¢ = 0.1 and 6 = 0.01.

These measures taken to enforce termination have some consequences which are important to
understand:

e If HySAT terminates with result ‘unsatisfiable’, then — assuming that there are no bugs
in the implementation — you can be sure, that the formula is actually unsatisfiable.

e If the solver stops with the result ‘candidate solution box found’, this means that for
the given € and § the solver could not detect any conflicts within the reported box. It does
not mean, however, that the box actually contains a solution. None the less, you will find,
that in most cases there will be a solution within the box or at least nearby.

If you think that HySAT has reported a spurious solution you should re-run the solver with
a smaller ¢ and ¢ in order to confirm (or refute) the previous result. In [?] we have proposed
methods which allow in certain cases to report solutions which provably satisfy the input formula.
For the paper we have benchmarked prototypic implementations of these methods. Because of
their experimental character we have opted for removing these methods from the version of the
solver which is available online.

5 Tool options

5.1 Restarting

HySAT mimics the restart policy implemented in PicoSAT3. Restarting is disabled by default. To
enable restarting use the command line option —--rst, followed by four parameters: a;ni; (integer),
binit (integer), f, (float) and f;, (float). The parameters have to satisfy ainit < binit and 1 < f, < fp.
Doing so, the n-th restart will happen a,, conflicts after the (n — 1)-th restart, i.e. after .. | a;
conflicts in total, where a,, is defined as follows:

Q1 = Ginit
b1 = binis
o Qinit if An—1 Z bnfl
n — .
| fa-an—1] otherwise

b — {L fobno1 | fan—1>bpa

bp—1 otherwise

Choosing ainis = 100, binis = 200, f, = 1.5 and f, = 2.0 yields the following restart schedule:

n 1 2 3 4 ) 6 7 8 9 10
an, 100 150 225 100 150 225 337Y 505 100 150
by, 200 200 200 400 400 400 400 400 800 800

>or,a; 100 250 475 575 725 950 1287 1792 1892 2042

PicoSAT uses the following settings: ainit = biniy = 100 and f, = f, = 1.1. To run HySAT with
PicSAT’s restart schedule start it with option ‘-—rst 100 100 1.1 1.1’

3http://fmv.jku.at/picosat/



6 Frequently asked questions (FAQ)

e When applied to purely Boolean problems, would HySAT be competitive with state-of-the-
art SAT solvers like MiniSAT or Chaff?

No, clearly not. The main reason is that the data structures employed in HySAT are rather
general and not optimized w.r.t. Boolean variables. Indeed Booleans, integers, and floats
are internally represented by the same type of object which makes handling of Boolean
atoms much less efficient than it could be. Moreover, HySAT lacks all the low-level code
optimizations (e.g. those which aim at improving the caching behaviour of the code) that
are common in todays SAT solvers. This said, I can see no principle reason why a more
elaborate implementation of the iSAT algorithm should be significantly slower on purely
Boolean problems than a standard SAT solver would be.

e [s there a difference between writing, e.g., 'yxy*y’ and ’y~3’ in an input file?

Yes, there is. The deduction rules for the power operator are much more powerful than those
for multiplication. When you have the choice, you should always opt for the power operator.

e Does HySAT support pseudo—Boolean constraints?

In contrast to its predecessor tool, the new HySAT does not contain any optimizations that
are specific for pseudo—Boolean constraint solving. Nevertheless you can use pseudo—Boolean
constraints in your model, because HySAT can deal with arbitrary integer constraints. Since
Boolean variables are 0-1 integer variables, the only thing you have to do is to slightly
rewrite your pseudo—Boolean constraints by replacing each negative literal —b with (1 — b).
The constraint 2—a+b+c¢ > 2, for example, becomes 2-(1—a)+b+c> 2,i.e. —2a+b+c>0
this way.

7 Final remarks

I implemented the current version of HySAT as part of my PhD work. The main purpose of the
implementation was to evaluate the concepts described in [?], rather than to provide the most
efficient code implementing them. Furthermore, the current implementation still lacks several
important features of modern SAT solvers (e.g. a more sophisticated heuristics for decision-
making, forgetting of learned clauses, progress saving, etc.) which probably would make the tool
much faster. This said, HySAT is suprisingly efficient and has solved formulas with some ten
thousands of float variables. I'd be interested to hear which problems you could solve with it.

Solvers are fairly complex pieces of software; as such, their implementation is prone to errors.
Though I did a lot of testing, HySAT is probably not free from bugs. Please be aware that neither
I nor the University of Oldenburg are liable for any losses or damages arising from the use of the
tool or its documentation. If you encounter errors or strange behaviour, please drop me an email
with a problem description, your input file, and instructions on how to reproduce the error. I will
try to fix the problem as soon as I can devote time to it.



ChangeLog

Version 0.8.1:

> First release.

Version 0.8.2:

> Fixed a bug in the deduction rule of the pow-operator.

> Added restarts.

Version 0.8.3:

> Fixed a bug concerning shifting of clauses.
> Added variable order ’shuffle’.

Version 0.8.4:

> Fixed some minor bugs.

Version 0.8.5:

> Added optimization mode (command line option --minimize).

Version 0.8.6:

> Fixed a bug in the decision procedure: The problem occured if the solver tried to split
an interval [z, T|, where z and T are huge float values. In this case it may happen that
no floating point number =z with x < = < T exists, although the width w = T — x of
the interval is still fairly large. This situation was not handled properly in the source
code and could misguide the solver into an ’almost-infinite loop’ which was only left by
chance and caused a rapidly increasing memory usage.
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