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Apologies

Due to serious health problems last week induced by a relapse, |
haven’t been able to prepare and print handouts. Pls. drop me an
email under

fraenzl e@ nf ormati k. uni - ol denbur g. de
and | will supply you with an electronic version asap.

Sorry for the inconvenience caused!
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What is a hybrid system?

Hybrid (griech.) bedeutet Uberheblich, hochmitig,
vermessen.

Weitere Inhalte [insbes. im wiss. Sprachgebrauch] sind
spater hinein interpretiert worden.

Hybrid (from Greece) means arrogant, presumptuous.
Other interpretations [in particular, in scientific jargon] have
been added later.

After H. Menge: Griechisch/Deutsch, Langenscheidt 1984

— when you try to verify hybrid systems,

be prepared that they may act like a prima donna!
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Hybrid Systems
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Hybrid systems

are ensembles of interacting discrete and continuous subsystems:

* Technical systems:

® physical plant + multi-modal control

® physical plant + embedded digital system

®* mixed-signal circuits

®* multi-objective scheduling problems (computers / distrib. energy
management / traffic managemant/ ...)

* Biological systems:

® Delta-Notch signaling in cell differentiation
® Blood clotting

* Economy:

® cash/good flows + decisions
o

* Medicine/health/epidemiology:
® infectious diseases + vaccination strategies
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Discrete vs. continuous

A discrete system
® operates on a state,

® performs discontinuous state changes at dis-
crete time points,

® state IS constant in between

E.g., a program
Prog. variables, position

Computation steps:
assignments, ctrl. flow

Stable states

Validation by

- Program
verification

- State exploration
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Discrete vs. continuous

a continuous system E.g., a ball

® operates on a continuous state, Height, speed

® which evolves continuously. Newtonian mechanics
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Coupled Dynamics: Forced Pendulum

Interaction of continuous dynamics and discrete mode switch
destroys global convergence!
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A Formal Model: Hybrid Automata

x =20.0 Ay =0.0

x=00Ay<0.0/
y'=-038-y

x : vertical position of the ball
Yy : velocity
y > 0 ball is moving up
y < 0 ball is moving down
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A Formal Model: Hybrid Automata

x =20.0\y =0.0
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x =0.0A\y <0.0
us00/ y(t)
y =-08-y 10 F -
0
x : vertical position of the ball
Yy : velocity -10
y > 0 ball is moving up
H H _20 | | |
y < 0 ball is moving down 0 5 p 5 g 10
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Hybrid automata

Coupled digital & analog systems

l

Finite automata with

Hybrid systems

Hybrid automata
®* immediate transitions that are

® triggered by predicates on the (continuous)
plant state

+ evolution of the continuous plant
® real-valued variables governed by

® aset of (restricted) differential equations that
are

® selected by the current automaton state
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Hybrid Automata

The formal model
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Hybrid Automaton (w/o Input) [after K.H. Johansson]

Def: a hybrid automaton H is a tuple H = (V, X, f, Init, Inv, Jump), where :

® Vs afinite set of discrete modes.
The elements of V represent the discrete states.

® X ={x1,...,%xis an (ordered) finite set ofcontinuous variables.
A real-valued valuation z € R™ of x1,...,x represent a continuous
state.

* feVxR™— R™assigns a vector fieldto each mode.
The dynamics in mode m is & = f(m, x).
® Init C V x R" is the initial condition.
Init defines the admissible initial states of H.
® Inv CV x R™ specifies themode invariants.
Inv defines the admissible states of H.
® Jump € V x R™ — P(V x R") is the jump relation.
Jump defines the possible discrete actions of H. The jump relation may

be non-deterministic and entails both discrete modes and continuous
variables.
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Generalizations

This definition of a HA is not the most general one. Obvious
extensions include

* Input / disturbances in the vector field.
* Labeled jumps.

* Nondeterministic continuous evolutions.
* Stochastic effects.
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Semantics: Two-Dimensional Time

o
A o
No. of discrete °
m ion . .
0 putgtt 0 discrete activity ceases, °
eps . ® - - - -—-—-—-- =
iﬁ progress of physical e Continuous phase:
time starts again ® Phys. time advances,
® no discrete steps
10+ o
o A
e  Discrete activity:
e ' No progress of physical time involved;
e , continuous activity frozen
o (
& A discretely perceptible event (threshold, elapse of clock)
occurs, starting discrete activity
0

————
Physical time

An idealization partially justified by differing speeds of ES and environment!
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Hybrld time [after K.H. Johansson]

Def: A hybrid time frame is a finite or infinitesequence
T = (I;,1;,...) of time intervals I;, where

* each I; Is a non-empty convex subset of R, I.e. a
non-empty interval in R,

* infI; € I; for each 1, 1.e. the intervals are left-closed,

* supI; € I; for each 1 < len T, I.€. all intervals excepts perhaps
the rightmost are right-closed,

°* max [; = minIj; for each 1 < len T, I.€. the intervals are
adjacent and overlap exactely in one point.
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Hybrld trajeCtOrieS [after K.H. Johansson]

Def: A hybrid trajectory E is a tuple E = (T, v, x) such that
e Tis a hybrid time frame,

°* ve VU V®withlenv = len T IS a sequence of discrete
modes,

t. f. t. t. .
°*x € (Rsog — LAY R U (Rso — LAY RM)@ with len x = len T
and dom x; = T3 IS a sequence of continuous flows of the
variables in X.
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Executions of a HA [after K.H. Johansson]

Def: Arun E = (T,v,x) is an execution of the hybrid automaton
H = (V, X, f, Init, Inv, Jump) iff
* |nitiation: (v, x;(minTy)) € Init,
e Consecution: Jump ((vi, xi(maxTi)) 2 (vigy, Xieq(minTi))
holds for all 1 < len T,
* Continuous evolution: x; Is a solution of % — f(vy, x) for
each i <len T,

e State consistency: (vi,x;(t)) € Inv for each t € dom T; and
eachi<lenT

hold.
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Hybrid systems

’* Wi ¥  * Proof obligation: Can the
b ' f system be guaranteed to
/ ve us -4 | - -
N we weren't | show desired behaviour, even
[ involved! o under disturbances? E.g.,

. T a ® remains in safe states?
i ' ® eventually reaches a

desired operational
mode?

® stabilizes, i.e., converges
against a setpoint / stable
orbit / region of phase
Space?

I involves co-verification of con-
troller and continuous envi-
ronment.
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State and Dimension Explosion

Number of continuous variables linear in number
of cars

® Positions, speeds, accelerations,
® torque, slip, ...

Number of discrete states exponential in number
of cars

® Operational modes, control modes,
® state of communication subsystem, ...

Size-dependent dynamics

® Latency in ctrl. loop depends on number of
cars due to communication subsystem.

® Coupled dynamics yields long hidden chan-
nels chaining signal transducers.

Need a scalable approach
Let’s try to achieve this through strictly symbolic methods.
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1. Translation of high-level models
® Simulink + Stateflow
® Compositional translation
® based on predicative encoding of block invariants

2. Basic principles of state-exploratory analysis of HA
® Finite-state abstraction vs. hybridisation vs. image computation of ODEs
® jterating a FO-definable map

3. A sample tool set
® SAT-modulo-theory based

® three (increasingly experimental) levels:
® linear hybrid automata vs. LINSAT
® non-linear assignments

®* non-linear differential equations
® under development in AVACS subprojects H1 and H2

IIIIIIIIIII
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Verification Frontend

Translation of hybrid systems
to arithmetic constraints
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Translation

Hybrid System Effective Verification
Encoding Backend
lterated FOLR,...) | A S
= V3V / v3 S
discrete Boolean . | Reach set S
formula (I . : T
1 Existential :
- FOL(R,...) :
' BMC/V :
1 '
1 DN
I Discrete/ g
'~ Timed abstr. ' ©
Reach set vV

* Compositional translation into many-sorted logics
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Analogy. Combinatorial Circuits

Combinational Combinational Circuit
Circuit | Circuit Il

Valuation

— of propositional variables Approval/

— of circuit nodes ounterexample
level
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Mapping circuits to formulae

A gate Is mapped to a propositional formula formalizing its invariant:

X_
& —z — xNy&z
y_
X_
y_>: 11—z — xVy&z

X—<]l1+—7 = —X&2Z

— combinations thereof.

Circuit behavior corresponds to conjunction of all its gate formulae.
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Generalizing the concept: Simulink+Stateflow
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‘Algebraic’ blocks

input f output

* time-invariant transfer function output(t) = f (input(t))

* made 1st-order by making time implicit: Flow = output = f (input )
* no constraints on initial value: Init = true,

* discontinuous jumps always admissible Jump = true,

All the formulae are elements of a suitably rich

1st-order logics over R.
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Integrators

input 1/s output
O
it

* integrates its input over time: output (t) = init + féinput(u) du.

* made semi-1st-order by using derivatives: Flow = dofff“t — input

* |nitial value Is rest value: Init = output = init,

* discontinuous jumps don’t affect output Jump = output = output,

UNIVERSITAT
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Use in Model Exploration

Given: Transition pred. trans(x, x’), initial state pred. init(x), conj. invar. ¢(x).

E.g., Bounded Model Checking (BMC) algorithm:
1. For given i € N check for satisfiability of

init(xo) A trans(xo,x7) /\ ... /A trans(xi_1,%i)
= G(xo) A AD(xi)
If test succeeds then report violation of goal.

2. Otherwise repeat with larger 1.

Can we use the predicates off-the-shelf?
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Images of ODEs: Approaches

1. Safe finite-state abstraction:

() E.g., discretization through quantization

(and overapproximation); yields finite-state
system.

(22 exponential in dimension of system

@ coarse abstractions give many false nega-
tives ~~ CEGAR

2. Hybridization: chop the phase space; do piece-
wise safe approximation by tractable dynamics
(e.g., maps definable in decidable logics over R)

() potentially more concise,

(22 yet still exponential in dimension of system

3. (Safely approximate) on-the-fly computation of ODE images.
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Hybridization

Will not elaborate on into this issue here: approaches range from

* approximation by piecewise (i.e., in a grid element) constant
differential inclusions obtained via interval-based safe approx. of
upper and lower bounds on individual derivatives:

dx dx
— =x*4+2yAxe[1,21ANye 5,71 ~ —e[11,18
dt dt
a.0. [Henzinger, Kopke, Puri, Varaiya 1998] [Stursberg, Kowalewski 1999]
* to approximation by piecew. affine / multi-affine vector fields
[Asarin, Dang, Girard 06]

* and to Taylor approximations [Piazza et al. 05, Lanotte, Tini 05]

For Lipschitz-continuous ODEs, imprecision generally is

* linear in grid width (though with different constants),
* exponential in length of time frame.

/!m\ e.g., [Girard 2002; Asarin, Dang, Girard 2006]

gt (G UNIVERSITAT
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Impact on decidability

Due to the (worst-case) exponential deviation over time, such
hybridizations are not sufficient for approximate (up to some ¢)
computation of the reachable state space over unbounded time
frames.

Hence, questions like

* "If the distance of the reachable state space from a set of bad
states larger than ¢ then provide a proof of this fact.”

for flows lacking a closed-form solution are i.g. not “decidable” by

hybridization and related approximation schemes.
[Platzer, Clarke 2006]

...unless the flow Is attracting such that it cancels the accumulating

error.
[Asarin, Dang, Girard 2006]
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Principles of hybrid state-space exploration:

Iterating a 1st-order definable map
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Checking safety

...In a finite Kripke structure:

1.

For increasing n, calculate the
set Reach=™ of states reachable
In at most n steps.

Chain Reachs' C Reach=? C ...
has only a finite ascending sub-
chain due to finiteness of state-
space.

Set |J . Reach=" of reachable
states can be constructed In
finitely many steps.

Check for intersection with set of
unsafe states.

...In a hybrid automaton:
Similar fixpoint construction

S

AN

Unsafe

need not terminate,
but yields an effective pro-
cedure for falsifi cation
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Making the idea operational: the ingredients

Idea: Iterate transition relation and continuous dynamics until an unsafe state is

hit:
Initial Step 1 Step 2 Step 3 Step 4 ﬁ
ST ye e ye A
N / N N N N /
unsafe
initial

Result: Terminates iff HA Is unsafe.
Requires: Effective representations of transition relation, continuous dynamics, and
initial, intermediate, and unsafe state sets s.t.
1. Calculation of the state set reachable within n € N steps is effective,

2. Emptiness of intersection of unsafe state set with the state set
reachable in n steps is decidable.

= (implemented in, e.g., HyTech [Henzinger, Ho, Wong-Toi, 1995—])
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From hybrid automata to logic
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Essentials of polynomial HA

e Finite set X of discrete states, finite vector x of cont. variables

* An activity predicate act, € FOL(R, =, +, x ) defines the possible
evolution of the continuous state while the system is in discrete

State o

e A transition predicate trans,_,, € FOL(R, =, +, x) defines guard
and effect of transition from discrete state o to discrete state ¢’

* A path S a sequence <(GO>yO)> (G1>y1)> .. > c (Z X Rd)*|w
entailing an alternation of transitions and activities:

o (xi=yi,x = yip1) E transe, o, if 1 is odd
¢ (;: Yi, X = yi+1) 'Z act s, and o; = Oi+1 If 11s even
* (X :=yp) = initial g,

Decidability of FOL(IR, =, +, x ) yields decision procedures for tem-
poral properties of paths of fi nitely fi xed length

AR ‘ UNIVERSITAT
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Reachability

of a final discrete state ¢ from an initial discrete state o and through
an execution containing n transitions can be formalized through the
Inductively defined predicatep™ where

o—o'?
O B fal se, if o # 0",
L=
e act, ,if o=o0",
gﬁﬁ[x‘l/x]/\
1 A
by = \/ dxq1,x2. | transg_, o [X1,%X2/ X, x] A

oex act - [XZ/ X ]
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Safety of hybrid automata

— An unsafe state is reachable within n steps iff

<
Unsafe,, = \/ Reachg,n/\ﬁsafegf
o'eX

IS satisfiable where

Reach>)" = \/ \/ (I)fHG,/\initiaIG[; /]

iENSn ocx

characterizes the continuous states reachable in at most n steps
within discrete state o”.

— An unsafe state is reachable iff there iIs some n € N for which
Unsafe,, IS satisfiable.

DES
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The semi-decision procedure

1. FOL(R,=,+, x) is decidable. [Tarski 1948]
2. Unsafe,, IS a formula of FOL(R, =, +, x).

— For arbitrary n € N it is decidable whether an unsafe state Is
reachable within n steps.

3. By successively testing increasing n, this yields a semi-decision
procedure for reachability of unsafe states:
(a) Select some n € N,
(b) check unsafe,,.

(c) If this yields t r ue then an unsafe state is reachable.
Report this and terminate.

(d) Otherwise select strictly larger n € N and redo from step (b).
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The semi-decision procedure — contd.

Note that in general the semi-decision procedure
can only detect being unsafe, yet does not termi-
nate iff the HA Is safe. Hence, it

e can be used for falsifying HA,

e but not for verifying them.

However, there are cases where Reach>""' = Reach>" holds for
some n € N s.t. the reachable state set can be calculated in a finite

number of steps.

But the reachability problem is undecidable in general!
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Decidability

The problem is undecidable already for very restricted subclasses of hybrid
automata:

* Stopwatch automata [Cerans 1992; Wilke 1994;
Henzinger, Kopke, Puri, Varaiya 1995]

® 3-dimensional piecewise constant derivative systems
[Asarin, Maler, Pnueli 1995]

Decidable subclasses tend to abandon interplay between changes in continuous
dynamics and transition selection/effect, or the dimensionality is extremely low:

®* Timed automata [Alur, Dill 1994] and initialized rectangular automata
[Henzinger, Kopke, Puri, Varaiya 1995]

® multi-priced timed automata [Larsen, Rasmussen 2005], priced timed
automata with pos. and neg. rates [Boyer, Brihaye, Bruyere, Raskin 2007]

® 2-dimensional piecewise constant derivative systems [Maler, Pnueli 1994],
_also non-deterministic [Asarin, Schneider, Yovine 2001]
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Iterating over the state-space

...how do we do this in practice
* on very large state spaces, both continuous and discrete?
* for non-polynomial assignments / pre-post-relations?
* for non-linear differential equations?
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SAT modulo theory
as an engine for
bounded model checking of
linear hybrid automata
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Bounded Model Checking (BMC)

N SR o

Method:

* construct formula that is satisfiable ifferror trace of length k
exists

* formula is a k—fold unrolling of the systems transition relation,
concatenated with a characterization of the initial state(s) and
the (unsafe) state to be reached

° use appropriate decision procedure to decide satisfiability of the
formula

e usually BMC is carried out incrementally for k =0,1,2,... until
_an error trace Is found or tired
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Bounded Model Checking (BMC) algorithm

1. For given i € N check for satisfiability of
( init(xg) A trans(xg, x1) /A ... Atrans(x;_1, xi)
=

d(xo) AL A P(xi)
If test succeeds then report violation of goal.

2. Otherwise repeat with larger 1.

).

CAV '07: Verification of Hybrid Systems — p.45/111



Linear hybrid automata

* In this part, we will concentrate on hybrid automata where the
Initiation and transition predicates are linear and the activities
give rise to polyhedral pre-post-relations:

* initial; € FOL(R, +, <) with free(initial ;) C {x1,...,Xq}
for each o,
* act, = diff, /A inv, € FOL(R, 4, <) for each o, where
* diff, is purely conjunctive and free(diffy) C {<L, ..., &4},
* inv, IS conjunctive and
free(invg) C {x1,...,Xaf U{x1,..., x4}
® transy_, o € FOL(R, +, <) with
free(transg_, o) € {X1,...,Xqt U{X1,...,Xq}

for each o, 0’.

* N.B.: Such continuous activities give rise to linear
pre-/post-relations.
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Linear Hybrid Automata (LHA)

20 30
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BMC of Linear Hybrid Automata

0 10

S~
afth ‘ UNIVERSITAT
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20

30

Initial state:

o) A —c9 A x°=0.0

Jumps:
Ao S (X >12) A (X =05-%x") Ath=0
Flows: (Xi—i—Zti) S Xi+1 S (Xi—|—3ti)
oiAoTT =4 A (X < 12)
A (tt>0)

Quantifier—free Boolean combinations of linear arithmetic
constraints over the reals

Parallel composition corresponds to conjunction of formulae
— No need to build product automaton
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Ingredients of a Solver for BMC of LHA

BMC of LHA yields very large boolean combination of linear
arithmetic facts.

Davis Putnam based SAT-Solver:

©) tackle instances with > 10.000 variables
©) efficient handling of disjunctions
(2 Boolean variables only

Linear Programming Solver:

@ solves large conjunctions of linear arithmetic inequations

© efficient handling of continuous variables (> 10°)
2 no disjunctions

ldea: Combine both methods to overcome shortcomings.
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Davis—Putnam Procedure

VvV X ‘ X

xVyVz) Decide

A (xVy)

N (yVz) Wz Z Deduce

-

AN (xVyV z) y g -

AN (xVyVz) eelae
2,z z Deduce
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Satisfiability solving for decidable theories:

Lazy theorem proving & DPLL(T)
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The Lazy TP Scheme: LINSAT

Davis Putnam Linear Programming
D pa—
‘ y A 3 T e
. Q Deduce g, f, A, B
_ Deduce C, D Deduce C from conflict cl.
Deduce D
IR O
. f f
X
T T T T T T —
Deduce A, B Deduce g, g
Learned conflict clause: A +B +C > 1

DPLL search

1. traversing possible truth-value assignments of Boolean part
2. incrementally (de-)constructing a conjunctive arithmetic constraint system
3. querying external solver to determine consistency of arithm. constr. syst.
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Deciding the conjunctive T-problems

For T being linear arithmetic over R, this can be done by linear
programming:

A Ai)jX'Sbj Iff AXSb
A\ D_ A

i=1 j=I

~ Solving LP maximize c'x

subjectto Ax <b
with arbitrary ¢ provides consistency information.
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Deciding the conjunctive T-problems (cntd.)

To cope with systems C containing strict inequations ) _."; A;;x;<b;,
one
classically: Introduces a slack variable ¢,
* then replaces ) ™, Ayjx;<bj by } ™ Aqjxi+e <b;,
* solves the resultant LP L, maximizing the objective function ¢
~ C Is satisfiable iff L is satisfiable with optimum solution > 0.

more elegantly: treat ¢ symbolically:
* use 1 and ¢ as fundamental units of the number system,

* represent all numbers and coefficients in inequations as
linear combinations of 1 and ¢

[Dutertre, de Moura 2006: Yices]
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Extracting reasons for T-conflicts

Goal: In case that the original constraint system

k
C— Ao 2 A < b
AN N Z;T; Aijx; < bj

Is infeasible, we want a subset I C {1,...,n} such that

* the subsystem C|; of the constraint system containing only
the conjuncts from I also is infeasible,

* yet the subsystem is irreducible in the sense that any proper
subset | of I designates a feasible system Cly.

Such an irreducible infeasible subsystem (lIS) Is a prime
Implicant of all the possible reasons for failure of the constraint

system C.
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DU RIN

Provided constraint system C contains only non-strict inequations,

® extraction of IS can be reduced to finding extremal solutions of a dual
system of linear inequations, similar to Farkas’ Lemma (Gleeson & Ryan
1990; Pfetsch, 2002)

® to keep the objective function bounded, one can use dual LP

maximize w'y

subjectto ATy = 0
bly = 1
y > 0
—1 ifb; <0,
where Wi = .
0 If b; >0

® choice of w guarantees boundedness of objective function
—> optimal solution exists whenever the LP is feasible.
I For such a solution, I ={i|y; # 0} is an lIS.
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Extensions & Optimizations

DPLL(T): If the T solver can itself do fwd. inference, it cannot only
prune the search tree through conflict detection, but also
through constraint propagation:

1. SAT solver assigns truth values to subset C C A of the set A
of constraints occurring in the input formula,

2. T solver finds them to be consistent and to imply a truth
value assignment to further T constraints D C A\ C,

3. these truth-value assignments are performed in the SAT
solver store before resuming SAT solving.
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SAT modulo theory for LINSAT

® SAT modulo theory solvers reasoning over linear arithmetic as a theory are
readily available: E.g.,

* LPSAT [Wolfman & Weld, 1999]

® |CS [Filliatre, Owre, Ruel3, Shankar 2001], Simplics [de Moura, Dutertre
2005], Yices [Dutertre, de Moura 2006]

®* MathSAT [Audemard, Bertoli, Cimatti, Kornilowicz, Sebastiani, Bozzano,
Juntilla, van Rossum, Schulz 2002-]

® SVC [Barrett, Dill, Levitt 1996], CVC [Stump, Barrett, Dill 2002], CVC
Lite [Barrett, Berezin 2004], CVC3 [Barrett, Fuchs, Ge, Hagen,
Jovanovic 2006]

® HySAT [Herde & Franzle, 2004]

® Their use for analyzing linear hybrid automata has been advocated a
number of times (e.g. in [Audemard, Bozzano, Cimatti, Sebastiani 2004]).

® They combine symbolic handling of discrete state components (via SAT
solving) with symbolic handling of continuous state components.

® Formulae arising in BMC have a specific structure, which can be exploited
for accelerating SAT search [Strichman 2004]
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Pimp my SMT Solver: Isomorphy Inference

A =N = = = O

o —9O *-—o—9O
*-—o—9O *-—o—9©

* |learning schemes employed in SAT solvers account for a major
fraction of the running time

* creation of a conflict clause is even more expensive in a
combined solver as it entails the extraction of an IS

* |dea: exploit symmetric structure to add isomorphic copies of a
conflict clause to the problem

* thus multiplying the benefittaken from the time—consuming
reasoning process
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Pimp my SMT Solver: Decision Strategies

e N

General-Purpose Decision Heuristics:
* distant cycles of the transition relation are being satisfied
iIndependently

* until they finally turn out to be incompatible, often entailing the
need to backtrack over long distances

For BMC we can use smarter decision strategies !

SSSSSSSSS
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Pimp my SMT Solver: Decision Strategies

-—>

Forward—Heuristics:

* select decision variables in the natural order induced by the
linear structure of the BMC formula

* e.g. starting with variables from cycle 0, then from cycle 1, 2, etc.
* thereby extending prefixes of legal runs of the system
* allows conflicts to be detected and resolved more locally
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Pimp my SMT Solver: Knowledge Reuse

SN Sl e B
*—o—9©

* when carrying out BMC incrementally the consecutive formulas
share a large number of clauses

* thus, when moving from instance k to k 4+ 1 (or doing them in
parallel), we can conjoin the conflict clauses derived when
solving the k—instance to the k 4+ T—instance (and vice versa)

* only sound for conflict clauses inferred from clauses which are
common to both instances
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Case Study: Elastic Distance Control

System Overview:

® n cars running on the same lane
® ecach car has a collision avoidance controller

® controller has four control modes:
® free running « front or/and back intrusion into safety envelope
® elastic coupling in case of intrusion
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Sample Trace

4500 I T T T T T T

ao00 - S(O) /

3500

3000

2500

2000

1500

1000 |- .

500 - t

l l l l l l

40 60 80 100 120 140 160

CAV '07: Verification of Hybrid Systems — p.63/111



Case Study: Elastic Distance Control

Results: (total time needed to solve all 22+1 instances until error
trace Is found)

n=23 n=4 n=>5 [min]
20

Methods yield factor 3 to 5 each
15
10

I I |
o= I . 0
SRS & g & & &F
& &

S Q
\)(\ ‘\60 A\
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but...

* what to do if assignments are non-linear?

X :=siny + e~

* what to do if continuous behavior is more general.
* linear differential equations?

dx
— = Ax+b
dt

* non-linear differential equations?

dx

— = sIn
dt Y
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Satisfiability solving in
undecidable arithmetic domains

ISAT algorithm
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Classical Lazy TP Layout

arithmetic

constraint system :

DPLL=SAT consistent: Arithmetic

+ conflict—driven learning & reasoner

+ non—chronol. backtrack. .

explanation:
(minimal) infeasible

subsystem

Problems with extending it to richer arithmetic domains:

* undecidability: answer of arithmetic reasoner no longer
two-valued; don’t know cases arise

* explanations: how to generate (nearly) minimal infeasible
subsystems of undecidable constraint systems?

SSSSSSSSS

lle\J;VERSITAT
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The Task

Find satisfying assignments (or prove absence thereof) for large
(thousands of Boolean connectives) formulae of shape

(b1 = x% —cosyj < 2y +sinz; +e™)
(x5 =tanys Vtanys > 24V ...)

(% — —sinx Ax3 >5Ax3< 7 A\x4 > 12/\)

> > > >

Conventional solvers

* do either address much smaller fragments of arithmetic
e decidable theories: no transcendental fct.s, no ODESs

* or tackle only small formulae
_* some dozens of Boolean connectives.

DES
SSSSSSSSS

CAV '07: Verification of Hybrid Systems — p.68/111



Algorithmic basis:

Interval constraint propagation
(Hull consistency version)
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Interval Constraint Solving (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

Ct: hy £x2
X2—|—y§6 ~ ¢2: /A hyZh;+vy
A hy <6

* “Forward” interval propagation yields justificationfor constraint satisfaction:

h, < 6is

satisfi ed in box
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Interval Constraint Solving (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

Ct: hy £x2
X2—|—y§6 ~ ¢2: /A hyZh;+vy
A hy <6

® [nterval propagation (fwd & bwd) yields witness for unsatisfiability:

h, <6is

unsat. in box
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Interval Constraint Solving (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

Ct: hy £x2
X2—|—y§6 ~ ¢2: /A hyZh;+vy
A hy <6

® [nterval prop. (fwd & bwd until fixpoint is reached) yieldscontraction of box:

x € [—10, 10]
Ay e [—10,10]
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Interval Constraint Solving (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

Ct: hy £x2
X2—|—y§6 ~ ¢2: /A hyZh;+vy
A hy <6

® [nterval prop. (fwd & bwd until fixpoint is reached) yieldscontraction of box:

x € [—10, 10]
Ay e [—10,10]

)

x € [—4,4]
Ay e [-10,6]
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Interval Constraint Solving (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

C1: hi&£x”2
X>4+y<6 ~ cr: A h, £h +y
A hy, <6

® [nterval prop. (fwd & bwd until fixpoint is reached) yieldscontraction of box:

Constraint is not satisfi ed

by the contracted box!

x € [—4,4]
Ay e [-10,6]
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Interval contraction

Backward propagation yields rectangular overapproximation of
non-rectangular pre-images.

Thus, interval contraction provides a highly incomplete deduction
system:

A h&x.y = — he(0,00) £~ h>5
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Schema of Interval-CP based CS Alg.

Given: Constraint / clause set C ={cy,...,cn},
initial box (= cartesian product of intervals) B in Rlfee(©)l / glfree(C)]

Goal: Find box B C B containing satisfying valuations throughout
or show non-existence of such B’.
Alg.: 1. L:={B}
2. If L # () then take some box b :€ L, (LIFO)
otherwise report “unsatisfiable” and stop.
3. Use contraction to determine a sub-box b’ C b. (Unit Prop.)
4. If b’ =( thensetL:=L\{b}, goto 2.

5. Use forward interval propagation to determine whether all
constraints are satisfied throughout V; if so then report b’ as
satisfying and stop.

6. Ifb’ CbthensetL:=L\{b}uU{b’}, goto 2.

7. Split b into subboxes b; and by, set L := L\ {b}U{by, by},
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DPLL-SAT and interval-CP based CS are inherently similar:

DPLL-SAT Interval-based CS
Propagation: contraction in lattice
1}
{fal se} {true} contraction in lattice
{fal se, true} of intervals over R
of Boolean intervals
Split: split of Boolean interval [f al se,t rue] | split of interval over R

This suggests a tighter integration than lazy TP:

common algorithms should be shared,
others should be lifted to both domains.
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Lazy TP: Tightening the Interaction

arithmetic
constraint system

D

DPLL-SAT consistent: Arithmetic

+ conflict-driven learning <L reasoner

+ non—chronol. backtrack. .

explanation:
(minimal) infeasible
subsystem

enters / removes constraints &
triggers individual constraint propagations

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
- b

Boolean DPLL-SAT Arithmetic

control flow

constraint : constraint
: + conflict—driven learning

prODagatlon -+ non- —chronol. backtrack. propagatlon

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

reports narrowing results
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Properties of Modified Layout

enters / removes constraints &
triggers individual constraint propagations

Boolean DPLL-SAT Arithmetic

control flow

constraint : constraint
: + conflict—driven learning

pr0pagatlon -+ non~chronol. backtrack. propagatlon

3
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

reports narrowing results

* SAT engine has introspection into CP
* thus can keep track of inferences and their reasons

@ can use recent SAT mechanisms for generalizing reasons of
conflicts and learning them, thus pruning the search tree
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UJN@;QS[IBTEISTTFLR?};VJRG(? SSSSSSSSS CAV '07: Verification of Hybrid Systems — p.75/111



Optimizations inherited from modern prop. SAT:

e conflict-driven learning
* non-chronological backtracking
* watched literal scheme

®* restarts

— have been instrumental to thousand-fold
Increase In tractable formula size for

- rop. SAT.
iﬁ/ L\ | prop

£ e [N 0%\ UNIVERSITAT
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Conflict-driven learning in multi-valued case

Works like a charme w/o fundamental modifications:

* Decision variables coincide to interval splits;
the assigned values to asserted bounds x > ¢, x > ¢, x < c,
x < ¢C;

* Implications correspond to contractions;
* Reasons to sets of asserted atoms giving rise to a contraction.

Through embedding into SAT, we get

conflict-driven learning and non-
chronological backtracking for free!

Faketae, (2S00 UNIVERSITAT
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Deduction and Learning
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The impact of learning: runtime

100000
10000 |
1000 |
100

10

without learning [s]

0.1 ¢

0.01 |

0.001 .

- time out

> 10m:
> 1m:
[ > 100k:
> 10k;

[ > 1k:1

K\ KK

0.001

[2.5 GHz AMD Opteron, 4 GByte physical

Iversitdt|oLDENBURG

0.01

0.1

1
with learning [s]

10

100 1000

memory, Linux]

Examples:
BMC of

® platoon ctrl.

® bounc. ball

® gingerbread
map

® oscillatory
logistic map

Intersect. of geo-
metric bodies

Size:
Up to 2400 var.s,

> 103 Boolean
connectives.
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The competition: ABsolver

L time out 9 ]

g
%

1000 i ‘//,/"/ "‘/,/' /////,//‘ %/’,//,’ /,/,/‘/’ ’///,/,/ ":
[ >500k:1 / . o

L RKAK
X

100 F 3 o0k1 ;
L | [ ,/// . >K //,’//,’
0
2 10 ¢ 1
. - > 10kl : -
o [ > 10kt *¥
o %
< 1 F>1kl B
E
B OLF >1000 A 1

001 F . 101 ]

0001 F .. . ]
[ > 11 2 15 small conjunctive systems  + 1
linear systems

nlon-linear systems X

S P S T S .
le-04 0.001 0.01 0.1 1 10 100 1000

runtime iSAT [s]

ABsolver: Bauer, Pister, Tautschnig, “Tool support for the analysis

of hybrid systems and models”, DATE '07
(K. )
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Discussion

Approach: Unification of ICP-based constraint solving and DPLL-based
propositional SAT solving in order to

® maintain the excellent reasoning power of ICP for robust constraints over R,
® pboost the performance on complex Boolean compositions of constraints

[Franzle, Herde, Ratschan, Schubert, Teige 2006/07]
First experimental results:

® conflict-driven learning and other SAT optimizations of ICP yield enormous
pruning of proof tree
= corresponding growth in size of tractable formulae

Conseqguences:
® can solve large boolean combinations of non-linear arithmetic constraints:

(&) non-linear time-discrete hybrid systems
(no differential equations, only difference equations)

() appropriate hybridisations of ODEs
(22 direct support for ODEs missing.

DES
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Direct reasoning over
Images and pre-images of ODEs
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dx ) )
= —siny Inactive

dt

dy __
at — ¢1x —C2y

* Linear and non-linear ordinary Differential Equations (ODES)
describing continous behaviour in the discrete modes of a hybrid

system
* Want to do BMC on these models w/o prior hybridisation
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The Problem

Given: a system of time-invariant ODEs

d
%:-h()“)"wxn)
dxn
%:fan)"wxn)

plus three boxes B,I,E C R™.

Problem: determine whether E is reachable from B along a trajectory
satisfying the ODE and not leaving I.

Added value: Prune unconnected parts of B and E: E
E A >
’ E, /(
§WZ’
_______ —
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Special case: adjacent boxes

Stursberg,Kowalewski et. al. [1997]:
Check sign of relevant derivative at box border:

l | A A
\ 1
A\ /TN /TN
| | | A
1 ' v v
([
xe [—5, 1]

use interval arithmetic for evaluating the ODE over the box border.
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Towards Pre-Post-Constraints

Lemma (n-dimensional mean value theorem): If

(y1,...,yn) € ENTlisreachable from (x1,...,x) € BN 1 via a flow

in I satisfying & = f then

JteRso: [\ Jacl:yi=xi+fi(a)-t

1<i<n

HSolver [Ratschan, 2004—]
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Problem: Safely determine whether E is unreachable from B along a
trajectory satisfying the ODE and not leaving 1.

Some approaches:

1. Interval-based safe numeric approximation of ODEs
[Moore 1965, Lohner 1987, Stauning 1997]

(used in Hypertech [Henzinger, Horowitz, Majumdar, Wong-Toi 2000])

2. CLP(F): a symbolic, constraint-based technology for
reasoning about ODEs grounded in (in-)equational
constraints obtained from Taylor expansions
[Hickey, Wittenberg 2004]
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Safe Approximation

A

fowbox

startbox

postbox

|
t; € TOI t

Should also be tight! And efficient to compute!

CAV '07: Verification of Hybrid Systems — p.88/111



Euler’'s Method

N
X S S A S S ol o el
T~ T T~
S e ~
S~ ~
T~ T T~
| | | | | _
| | | | | t
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Taylor Series

Exact solution x(t) has slope determined by f in each point:
&= f(x(t))

dt
Taylor expansion of exact solution:

1
x(to-+ 1) =x(to) + 7o (to)
h? d%x
+ Z_IW(JCO) + ...
h™ d™x
T dpn (0
A gy (LAGRANGE REMAINDER)

+ nr 1)l g (t, + 6h), witho< 6 <1
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Taylor Series

h! dx
X(to + h) =x(to) + m E(tO)
’ ~—

h™ d™x (1)
n! dtn
hTH—] dn—HX
_I_
(m+1)! dtnt

unknown

(to+ Oh), with0 < 0 < 1

7

Can use interval arithm. to evaluate f(x(ty)), etc.,

if x(ty) is set-valued!
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Bounding Box

x A

to—ll—h t

at (B)) o, .
&(1) > min(f(B)) forallt € [tg, tog + hl

If we only knew B...
/!m \
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Bounding Box [Lohner]

Given: Initial value problem:

£ = f(x), x(to) = xo may also be a box

Theorem (Lohner): If
[B'] := o+ [0,h] - f([B)

[B'] C [B]

then the initial value problem above has exactly one solution
over [to, to + h] which lies entirely within [B'] — Bounding Box.

and
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Algorithm

To get an enclosure ...
* Determine bounding box and stepsize
* Evaluate Taylor series up to desired order over startbox
* Evaluate remainder term over bounding box
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Bounding Box

RS

R N
RRRESSTSS

0.45
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Algorithm

* Find bounding box with greedy algorithm
* Generate derivatives symbolically
* Simplify expressions to reduce alias effects on variables

* Evaluate expressions with interval arithmetic

* Taylor series
* Lagrange remainder
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dx — _x 3, N — x xo=1[2,4], yo = [1,1]

CAV '07: Verification of Hybrid Systems — p.97/111



Example II: Stable Oscillator
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Wrapping Effect

dx =, ‘31% — —x, xo = [10,12], yo = [—1,0]

dt

0.4 0.5
9.5 9 85 0 0.1 0.2 0.3 t
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Fight Wrapping Effect

Lohner, Stauning, ...: use coordinate transformation

————————————— (s
c, d]
————————————— (s
I
I
[~
X
(%= )
%@% / UNIVERSITAT
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Stable Oscillator

S =V, @ =% x=10,12], yo=[~1,0

15 T T T T T

o} %%% o

=— t = 6.00748 T
0 E_:’_\ EEJL:O =

= t=0.286473
= : t= 0.593339%

R _

-15 | | | | |
-15 -10 -5 0 5 10 15
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Damped Oscillator

=y —-08-%x, ¥ =—x+03y, xo=1[10,15], yo = [-2,1]

-25 0
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Use In ICP: Tighten Target Box

_20 0

* Given target box (including phase space and time)
* Intersect target box with enclosure

* Remove elements with empty intersection
(narrows also time-window of interest)
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Backward Propagation

* Use temporally reversed ODEs
* Use start box as target box and do normal forward propagation
* |ntersect resulting target box with original start box

Fwd. and bwd. propagation do
* narrow the start box B and target box E — also iteratively!
* narrow the time window for both B and E,

* thus give fresh meat to constraint propagation along adjacent
parts of the transition sequence!
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Controlling Complexity: Partitioning

* Partition ODEs: Group together ODEs with common variables

* Deduction process alternates between different partitions and
between forward and backward pruning:

TOI: [0, horizon]

forward propagation | p1 | To P2 | TOl P3 o ... ——

TOI

TOI

backward propagation =] Pl P2 o P33 —= ...

context P1 context P2 context P3

RS e (SoiP  UNIVERSITAT
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* Taylor-based numerical method with error enclosure

* Tightly integrated with non-linear arithmetic constraint solving:
* provides an interval contractor, just like ICP

B

%
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* temporally symmetric (fwd. and bwd. contraction), unlike
traditional image computation

* refutes trajectory bundles based on partial knowledge

* experimental: first proof-of-concept implemented.
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Summary
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Verification Flow

Hybrid System Model Effective Verification
Encoding Backend

lterated FOL(R,...) |
v3av / vd

I
precision

Reach set

discrete » Boolean
formula

FOL(R,...)
- BMC/V

Discrete/
Timed abstr.
Reach set

Existential
\

system size

Strictly symbolic approach,

exemplified on an SMT-based tool set.
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* These were just some appetizers shedding light on principles.

* Haven'’t touched major topics in hybrid systems, e.g.

* Data structures (and related image computation procedures)
for more precise representation of images:

* polytopes (e.g., [Henzinger, Ho, Wong-Toi 1995, Chutinan,
Krogh 1998, Frehse 2005]), zonotopes [Girard 2005,
Girard, le Guernic, Maler 2006, ...], ellipsoids [Kurzhanski,
Varaiya 2000], level sets of functions [Tomlin], ...

* AIG(LP) [Damm et al. 2006], hybrid restriction diagrams

[Wang 2004], ...

e Stability theory
* Lyapunov and Lyapunov-like functions
* discharging the related proof obligations; synthesizing

these withess functions
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Perspectives for researchers

* Approximation theories and decidability issues

® Safe approximation is essential, under which circumstances do they
provide decision procedures; what are the appropriate notions of
approximate decision?

® Robust systems and “almost decidablility” [Franzle 1999, Asarin,
Bouajjani 2001, Collins 2006, Platzer, Clarke 2006, Girard, Pappas
2006, Girard 2007]

* Scalability and performance issues

® All current algorithms are quite confined

® Massively branching behavior of non-deterministic hybrid systems
together w. intricate continuous dynamics

® Better algorithms and data structures; maybe tailored to specific
analysis goals and system types

* Modeling issues

®* Adequate modeling languages for the variety of hybrid phenomena
® Currently, most modeling is simulation-oriented
® Languages should concisely model system dynamics (including
—..... hon-determinism, probabilism, etc., were adequate) and the input
/E;\ domain of open systems (shapes of inputs, controllability attributes, ...)
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