
Taking Advantage of Properties and
Dataflow in Difference Verification

Marie-Christine Jakobs
joint work with Tim Pollandt

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 1

The Modification Challenge

Program P

Verifier

✓/×

Property φ

Program P′modification
− bug fix
− refactoring
− change request
− new feature

Verifier

Property φ′

✓/×

Challenge:
Programs change frequently
Reverification necessary after each change
Reverification must keep up with changes

=⇒ Verification of every modified program infeasible!

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 2

The Modification Challenge

Program P

Verifier

✓/×

Property φ

Program P′modification
− bug fix
− refactoring
− change request
− new feature

Verifier

Property φ′

✓/×

Challenge:
Programs change frequently
Reverification necessary after each change
Reverification must keep up with changes

=⇒ Verification of every modified program infeasible!

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 2

The Modification Challenge

Program P

Verifier

✓/×

Property φ

Program P′modification
− bug fix
− refactoring
− change request
− new feature

Verifier

Property φ′

✓/×

Challenge:
Programs change frequently
Reverification necessary after each change
Reverification must keep up with changes

=⇒ Verification of every modified program infeasible!

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 2

Suggested Solution: Only Look for New Bugs

safe
inputs(P ′)

un
sa
fe

inp
uts
(P
′)

sa
fe

inp
uts
(P
)

unsafe
inputs(P)

Approach: Overapproximate and then verify (syntactical) paths with new bugs

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 3

Suggested Solution: Only Look for New Bugs

safe
inputs(P ′)

un
sa
fe

inp
uts
(P
′)

sa
fe

inp
uts
(P
)

unsafe
inputs(P)

Approach: Overapproximate and then verify (syntactical) paths with new bugs

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 3

Difference Verifier

Difference Condition Extractor

Difference
Detector

Condition
Generator

modified program P′

original program P

Conditional Verifier

Reducer-based Conditional Verifier

Reducer Verifier

DG(P,P’) condition

residual
program

Difference condition extractor overapproximates relevant paths
Difference detector determine relevant paths
Condition generator encodes paths into conditions

Conditional verifier restricts analysis to identified paths

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 4

Difference Graphs Characterizing New Bugs

(ℓ0, ℓ
′
0)

(ℓ0, ℓ
′
1) (ℓ2, ℓ

′
2) (ℓ3, ℓ

′
3)

ℓ′6

(ℓerr, ℓ′err)

(ℓ4, ℓ
′
4) ℓ′5

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

Paths relate to execution paths of the modified program
Any path that matches to a prefix of a new bug must be extendable s.t.

1. it stil matches to a prefix of the new bug
2. ends in a relevant (∆-)node (grey nodes)

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 5

Condition Generation from Difference Graph

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ4, ℓ
′
4)

(ℓ4, ℓ
′
4)

(ℓ0, ℓ
′
1)

(ℓ0, ℓ
′
1)

(ℓ2, ℓ
′
2)

(ℓ2, ℓ
′
2)

(ℓ3, ℓ
′
3)

(ℓ3, ℓ
′
3)

(ℓerr, ℓ′err)

(ℓerr, ℓ′err)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

Input: difference graph (N, E, n0,∆)
Output: extracted condition
1: Q = {n0} ∪∆; waitlist = {n0} ∪∆;
2: while (waitlist ̸= ∅) do
3: pop ns from waitlist
4: for each (np, (ℓ, op, ℓ′), ns) ∈ E with np /∈ Q

do
5: Q = Q ∪ {np};
6: waitlist = waitlist ∪ {np};
7: F = {ns | ∃(np, g, ns) ∈ E ∧ np ∈ Q ∧ ns /∈ Q};
8: return (Q ∪ F, E ∩ (Q× G′ × (Q ∪ F)), n0, F);

Theorem
Let DG(P,P′) be a difference graph for programs P and P′. The condition
generator outputs a condition that does not cover paths that cause new bugs.

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 6

Condition Generation from Difference Graph

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5(ℓ4, ℓ
′
4)

(ℓ4, ℓ
′
4)

(ℓ0, ℓ
′
1)

(ℓ0, ℓ
′
1)

(ℓ2, ℓ
′
2)

(ℓ2, ℓ
′
2)

(ℓ3, ℓ
′
3)

(ℓ3, ℓ
′
3)

(ℓerr, ℓ′err)

(ℓerr, ℓ′err)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

Input: difference graph (N, E, n0,∆)
Output: extracted condition
1: Q = {n0} ∪∆; waitlist = {n0} ∪∆;
2: while (waitlist ̸= ∅) do
3: pop ns from waitlist
4: for each (np, (ℓ, op, ℓ′), ns) ∈ E with np /∈ Q

do
5: Q = Q ∪ {np};
6: waitlist = waitlist ∪ {np};
7: F = {ns | ∃(np, g, ns) ∈ E ∧ np ∈ Q ∧ ns /∈ Q};
8: return (Q ∪ F, E ∩ (Q× G′ × (Q ∪ F)), n0, F);

Theorem
Let DG(P,P′) be a difference graph for programs P and P′. The condition
generator outputs a condition that does not cover paths that cause new bugs.

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 6

Condition Generation from Difference Graph

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ4, ℓ
′
4)

(ℓ4, ℓ
′
4)

(ℓ0, ℓ
′
1)

(ℓ0, ℓ
′
1)

(ℓ2, ℓ
′
2)

(ℓ2, ℓ
′
2)

(ℓ3, ℓ
′
3)

(ℓ3, ℓ
′
3)

(ℓerr, ℓ′err)

(ℓerr, ℓ′err)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

Input: difference graph (N, E, n0,∆)
Output: extracted condition
1: Q = {n0} ∪∆; waitlist = {n0} ∪∆;
2: while (waitlist ̸= ∅) do
3: pop ns from waitlist
4: for each (np, (ℓ, op, ℓ′), ns) ∈ E with np /∈ Q

do
5: Q = Q ∪ {np};
6: waitlist = waitlist ∪ {np};
7: F = {ns | ∃(np, g, ns) ∈ E ∧ np ∈ Q ∧ ns /∈ Q};
8: return (Q ∪ F, E ∩ (Q× G′ × (Q ∪ F)), n0, F);

Theorem
Let DG(P,P′) be a difference graph for programs P and P′. The condition
generator outputs a condition that does not cover paths that cause new bugs.

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 6

Condition Generation from Difference Graph

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ4, ℓ
′
4)

(ℓ4, ℓ
′
4)

(ℓ0, ℓ
′
1)

(ℓ0, ℓ
′
1) (ℓ2, ℓ

′
2)

(ℓ2, ℓ
′
2)

(ℓ3, ℓ
′
3)

(ℓ3, ℓ
′
3)

(ℓerr, ℓ′err)

(ℓerr, ℓ′err)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

Input: difference graph (N, E, n0,∆)
Output: extracted condition
1: Q = {n0} ∪∆; waitlist = {n0} ∪∆;
2: while (waitlist ̸= ∅) do
3: pop ns from waitlist
4: for each (np, (ℓ, op, ℓ′), ns) ∈ E with np /∈ Q

do
5: Q = Q ∪ {np};
6: waitlist = waitlist ∪ {np};
7: F = {ns | ∃(np, g, ns) ∈ E ∧ np ∈ Q ∧ ns /∈ Q};
8: return (Q ∪ F, E ∩ (Q× G′ × (Q ∪ F)), n0, F);

Theorem
Let DG(P,P′) be a difference graph for programs P and P′. The condition
generator outputs a condition that does not cover paths that cause new bugs.

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 6

Condition Generation from Difference Graph

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ4, ℓ
′
4)

(ℓ4, ℓ
′
4)

(ℓ0, ℓ
′
1)

(ℓ0, ℓ
′
1) (ℓ2, ℓ

′
2)

(ℓ2, ℓ
′
2) (ℓ3, ℓ

′
3)

(ℓ3, ℓ
′
3)

(ℓerr, ℓ′err)

(ℓerr, ℓ′err)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

Input: difference graph (N, E, n0,∆)
Output: extracted condition
1: Q = {n0} ∪∆; waitlist = {n0} ∪∆;
2: while (waitlist ̸= ∅) do
3: pop ns from waitlist
4: for each (np, (ℓ, op, ℓ′), ns) ∈ E with np /∈ Q

do
5: Q = Q ∪ {np};
6: waitlist = waitlist ∪ {np};
7: F = {ns | ∃(np, g, ns) ∈ E ∧ np ∈ Q ∧ ns /∈ Q};
8: return (Q ∪ F, E ∩ (Q× G′ × (Q ∪ F)), n0, F);

Theorem
Let DG(P,P′) be a difference graph for programs P and P′. The condition
generator outputs a condition that does not cover paths that cause new bugs.

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 6

Condition Generation from Difference Graph

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ4, ℓ
′
4)

(ℓ4, ℓ
′
4)

(ℓ0, ℓ
′
1)

(ℓ0, ℓ
′
1)

(ℓ2, ℓ
′
2)

(ℓ2, ℓ
′
2)

(ℓ3, ℓ
′
3)

(ℓ3, ℓ
′
3)

(ℓerr, ℓ′err)

(ℓerr, ℓ′err)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

Input: difference graph (N, E, n0,∆)
Output: extracted condition
1: Q = {n0} ∪∆; waitlist = {n0} ∪∆;
2: while (waitlist ̸= ∅) do
3: pop ns from waitlist
4: for each (np, (ℓ, op, ℓ′), ns) ∈ E with np /∈ Q

do
5: Q = Q ∪ {np};
6: waitlist = waitlist ∪ {np};
7: F = {ns | ∃(np, g, ns) ∈ E ∧ np ∈ Q ∧ ns /∈ Q};
8: return (Q ∪ F, E ∩ (Q× G′ × (Q ∪ F)), n0, F);

Theorem
Let DG(P,P′) be a difference graph for programs P and P′. The condition
generator outputs a condition that does not cover paths that cause new bugs.

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 6

Condition Generation from Difference Graph

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ4, ℓ
′
4)

(ℓ4, ℓ
′
4)

(ℓ0, ℓ
′
1)

(ℓ0, ℓ
′
1)

(ℓ2, ℓ
′
2)

(ℓ2, ℓ
′
2)

(ℓ3, ℓ
′
3)

(ℓ3, ℓ
′
3)

(ℓerr, ℓ′err)

(ℓerr, ℓ′err)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

Input: difference graph (N, E, n0,∆)
Output: extracted condition
1: Q = {n0} ∪∆; waitlist = {n0} ∪∆;
2: while (waitlist ̸= ∅) do
3: pop ns from waitlist
4: for each (np, (ℓ, op, ℓ′), ns) ∈ E with np /∈ Q

do
5: Q = Q ∪ {np};
6: waitlist = waitlist ∪ {np};
7: F = {ns | ∃(np, g, ns) ∈ E ∧ np ∈ Q ∧ ns /∈ Q};
8: return (Q ∪ F, E ∩ (Q× G′ × (Q ∪ F)), n0, F);

Theorem
Let DG(P,P′) be a difference graph for programs P and P′. The condition
generator outputs a condition that does not cover paths that cause new bugs.

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 6

Condition Generation from Difference Graph

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ4, ℓ
′
4)

(ℓ4, ℓ
′
4)

(ℓ0, ℓ
′
1)

(ℓ0, ℓ
′
1)

(ℓ2, ℓ
′
2)

(ℓ2, ℓ
′
2)

(ℓ3, ℓ
′
3)

(ℓ3, ℓ
′
3)

(ℓerr, ℓ′err)

(ℓerr, ℓ′err)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

Input: difference graph (N, E, n0,∆)
Output: extracted condition
1: Q = {n0} ∪∆; waitlist = {n0} ∪∆;
2: while (waitlist ̸= ∅) do
3: pop ns from waitlist
4: for each (np, (ℓ, op, ℓ′), ns) ∈ E with np /∈ Q

do
5: Q = Q ∪ {np};
6: waitlist = waitlist ∪ {np};
7: F = {ns | ∃(np, g, ns) ∈ E ∧ np ∈ Q ∧ ns /∈ Q};
8: return (Q ∪ F, E ∩ (Q× G′ × (Q ∪ F)), n0, F);

Theorem
Let DG(P,P′) be a difference graph for programs P and P′. The condition
generator outputs a condition that does not cover paths that cause new bugs.

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 6

Condition Generation from Difference Graph

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ0, ℓ
′
0)

ℓ′6ℓ′5

(ℓ4, ℓ
′
4)

(ℓ4, ℓ
′
4)

(ℓ0, ℓ
′
1)

(ℓ0, ℓ
′
1)

(ℓ2, ℓ
′
2)

(ℓ2, ℓ
′
2)

(ℓ3, ℓ
′
3)

(ℓ3, ℓ
′
3)

(ℓerr, ℓ′err)

(ℓerr, ℓ′err)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

Input: difference graph (N, E, n0,∆)
Output: extracted condition
1: Q = {n0} ∪∆; waitlist = {n0} ∪∆;
2: while (waitlist ̸= ∅) do
3: pop ns from waitlist
4: for each (np, (ℓ, op, ℓ′), ns) ∈ E with np /∈ Q

do
5: Q = Q ∪ {np};
6: waitlist = waitlist ∪ {np};
7: F = {ns | ∃(np, g, ns) ∈ E ∧ np ∈ Q ∧ ns /∈ Q};
8: return (Q ∪ F, E ∩ (Q× G′ × (Q ∪ F)), n0, F);

Theorem
Let DG(P,P′) be a difference graph for programs P and P′. The condition
generator outputs a condition that does not cover paths that cause new bugs.

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 6

DIFFCOND: Computing Difference Graphs
Based on Syntactic Changes

ℓ0

ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6

ℓerr
r=-x;

x>0

!(x>0)

r=-x;

r<0;

!(r<0)

r==0 r=-1;

!(r==0);

ℓ′0

ℓ′1 ℓ′2 ℓ′3

ℓ′4 ℓ′5 ℓ′6

ℓ′err
r=x;

x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0 r=-1;

!(r==0);

(ℓ0, ℓ
′
0)

ℓ′1

r=x;

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 7

DIFFCOND: Computing Difference Graphs
Based on Syntactic Changes

ℓ0

ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6

ℓerr
r=-x;

x>0

!(x>0)

r=-x;

r<0;

!(r<0)

r==0 r=-1;

!(r==0);

ℓ′0

ℓ′1 ℓ′2 ℓ′3

ℓ′4 ℓ′5 ℓ′6

ℓ′err
r=x;

x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0 r=-1;

!(r==0);

(ℓ0, ℓ
′
0)

ℓ′1

r=x;

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 7

DIFFCOND: Computing Difference Graphs
Based on Syntactic Changes

ℓ0

ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6

ℓerr
r=-x;

x>0

!(x>0)

r=-x;

r<0;

!(r<0)

r==0 r=-1;

!(r==0);

ℓ′0

ℓ′1 ℓ′2 ℓ′3

ℓ′4 ℓ′5 ℓ′6

ℓ′err
r=x;

x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0 r=-1;

!(r==0);

(ℓ0, ℓ
′
0)

ℓ′1

r=x;

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 7

DIFFDP: Utilizing Property and Dataflow
to Compute a More Precise Difference Graphs

ℓ0

ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6

ℓerr
r=-x;

x>0

!(x>0)

r=-x;

r<0;

!(r<0)

r==0 r=-1;

!(r==0);

ℓ′0

ℓ′1 ℓ′2 ℓ′3

ℓ′4 ℓ′5 ℓ′6

ℓ′err
r=x;

x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0 r=-1;

!(r==0);

(ℓ0, ℓ
′
0)

(ℓ0, ℓ
′
1) (ℓ2, ℓ

′
2)

(ℓ4, ℓ
′
4)

(ℓ3, ℓ
′
3)

ℓ′6

(ℓerr, ℓ′err)

ℓ′5

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

{}

{r}

{r}

{r}
{}

{}

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 8

DIFFDP: Utilizing Property and Dataflow
to Compute a More Precise Difference Graphs

ℓ0

ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6

ℓerr
r=-x;

x>0

!(x>0)

r=-x;

r<0;

!(r<0)

r==0 r=-1;

!(r==0);

ℓ′0

ℓ′1 ℓ′2 ℓ′3

ℓ′4 ℓ′5 ℓ′6

ℓ′err
r=x;

x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0 r=-1;

!(r==0);

(ℓ0, ℓ
′
0)

(ℓ0, ℓ
′
1) (ℓ2, ℓ

′
2)

(ℓ4, ℓ
′
4)

(ℓ3, ℓ
′
3)

ℓ′6

(ℓerr, ℓ′err)

ℓ′5

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

{}

{r}

{r}

{r}
{}

{}

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 8

DIFFDP: Utilizing Property and Dataflow
to Compute a More Precise Difference Graphs

ℓ0

ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6

ℓerr
r=-x;

x>0

!(x>0)

r=-x;

r<0;

!(r<0)

r==0 r=-1;

!(r==0);

ℓ′0

ℓ′1 ℓ′2 ℓ′3

ℓ′4 ℓ′5 ℓ′6

ℓ′err
r=x;

x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0 r=-1;

!(r==0);

(ℓ0, ℓ
′
0)

(ℓ0, ℓ
′
1)

(ℓ2, ℓ
′
2)

(ℓ4, ℓ
′
4)

(ℓ3, ℓ
′
3)

ℓ′6

(ℓerr, ℓ′err)

ℓ′5

r=x;

x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

{}

{r}

{r}

{r}
{}

{}

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 8

DIFFDP: Utilizing Property and Dataflow
to Compute a More Precise Difference Graphs

ℓ0

ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6

ℓerr
r=-x;

x>0

!(x>0)

r=-x;

r<0;

!(r<0)

r==0 r=-1;

!(r==0);

ℓ′0

ℓ′1 ℓ′2 ℓ′3

ℓ′4 ℓ′5 ℓ′6

ℓ′err
r=x;

x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0 r=-1;

!(r==0);

(ℓ0, ℓ
′
0)

(ℓ0, ℓ
′
1) (ℓ2, ℓ

′
2)

(ℓ4, ℓ
′
4)

(ℓ3, ℓ
′
3)

ℓ′6

(ℓerr, ℓ′err)

ℓ′5

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

{}

{r}

{r}

{r}

{}

{}

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 8

DIFFDP: Utilizing Property and Dataflow
to Compute a More Precise Difference Graphs

ℓ0

ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6

ℓerr
r=-x;

x>0

!(x>0)

r=-x;

r<0;

!(r<0)

r==0 r=-1;

!(r==0);

ℓ′0

ℓ′1 ℓ′2 ℓ′3

ℓ′4 ℓ′5 ℓ′6

ℓ′err
r=x;

x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0 r=-1;

!(r==0);

(ℓ0, ℓ
′
0)

(ℓ0, ℓ
′
1) (ℓ2, ℓ

′
2)

(ℓ4, ℓ
′
4)

(ℓ3, ℓ
′
3)

ℓ′6

(ℓerr, ℓ′err)

ℓ′5

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

{}

{r}

{r}

{r}
{}

{}

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 8

DIFFDP: Utilizing Property and Dataflow
to Compute a More Precise Difference Graphs

ℓ0

ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6

ℓerr
r=-x;

x>0

!(x>0)

r=-x;

r<0;

!(r<0)

r==0 r=-1;

!(r==0);

ℓ′0

ℓ′1 ℓ′2 ℓ′3

ℓ′4 ℓ′5 ℓ′6

ℓ′err
r=x;

x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0 r=-1;

!(r==0);

(ℓ0, ℓ
′
0)

(ℓ0, ℓ
′
1) (ℓ2, ℓ

′
2)

(ℓ4, ℓ
′
4)

(ℓ3, ℓ
′
3)

ℓ′6

(ℓerr, ℓ′err)

ℓ′5

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

{}

{r}

{r}

{r}
{}

{}

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 8

DIFFDP: Utilizing Property and Dataflow
to Compute a More Precise Difference Graphs

ℓ0

ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6

ℓerr
r=-x;

x>0

!(x>0)

r=-x;

r<0;

!(r<0)

r==0 r=-1;

!(r==0);

ℓ′0

ℓ′1 ℓ′2 ℓ′3

ℓ′4 ℓ′5 ℓ′6

ℓ′err
r=x;

x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0 r=-1;

!(r==0);

(ℓ0, ℓ
′
0)

(ℓ0, ℓ
′
1) (ℓ2, ℓ

′
2)

(ℓ4, ℓ
′
4)

(ℓ3, ℓ
′
3)

ℓ′6

(ℓerr, ℓ′err)

ℓ′5

r=x;
x>0

!(x>0)

r=-x;

r<=0;

!(r<=0)

r==0

!(r==0)

{}

{r}

{r}

{r}
{}

{}

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 8

Soundness Result for DIFFDP

Theorem
DIFFDP returns a difference graph.

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 9

Evaluation

Verifiers ü ESBMC, CPAchecker, Predicate
Difference Detectors 3 All, DIFFCOND, DIFFDP

Tasks combination tasks eca05+token, gcd+newton, pals+eca12,
sfifo+token, square+softflt
regression verification tasks

Environment � § Intel Xeon E3-1230 v5 CPU, 33 GB, Ubuntu 20.04
µ 4 processing units, 15 GB of memory
/ 15 min of CPU time

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 10

More Effective Than Full Verification?
(All vs. DIFFDP)

eca05+token gcd+newton pals+eca12 sfifo+token square+softflt regression
(2 340+1 300) (1 352+572) (1 700+1 050) (1 206+663) (165+75) (3 936+0)

✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3

PREDICATE 912 1040 0 0 520 0 0 50 0 558 507 0 22 51 0 2595 0 0
PREDICATE∆

nat
DP 1400 985 0 156 520 0 125 75 0 594 488 0 115 75 0 2663 0 0

PREDICATE 912 1040 0 0 520 0 0 50 0 558 507 0 22 51 0 2595 0 0
PREDICATE∆

red
DP 1390 955 0 156 572 0 125 50 0 639 456 0 135 60 0 2685 0 0

CPACHECKER 633 1296 0 0 494 0 0 100 0 434 510 0 0 75 0 3931 0 0
CPACHECKER∆

red
DP 1119 1252 0 156 520 0 671 500 0 480 638 0 117 60 0 3618 0 0

ESBMC 0 1125 0 570 572 0 198 530 0 0 663 0 165 75 0 0 0 0
ESBMC∆red

DP 0 900 0 880 572 0 0 70 10 101 618 0 156 75 0 0 0 0

Difference verification with DIFFDP condition extractor often more effective

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 11

More Efficient Than Full Verification?
(All vs. DIFFDP)

0.1

1

10

100

0.1 1 10 100

C
P

U
 ti

m
e

of
 d

iff
er

en
ce

 v
er

ifi
er

s
V
D

D
P

CPU time of verifiers V

Conditional verifier faster
Detector time sometimes too costly to be beneficial

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 12

Difference Verification With DIFFDP More Effective
Then With DIFFCOND?

eca05+token gcd+newton pals+eca12 sfifo+token square+softflt regression
(2 340+1 300) (1 352+572) (1 700+1 050) (1 206+663) (165+75) (3 936+0)

✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3

PREDICATE∆
nat
syn 1395 987 0 48 520 0 10 52 0 589 481 0 61 75 0 2599 0 0

PREDICATE∆
nat
DP 1400 985 0 156 520 0 125 75 0 594 488 0 115 75 0 2663 0 0

PREDICATE∆
red
syn 1394 975 0 48 474 0 10 95 0 642 468 0 81 45 0 2639 0 0

PREDICATE∆
red
DP 1390 955 0 156 572 0 125 50 0 639 456 0 135 60 0 2685 0 0

CPACHECKER∆
red
syn 1000 1282 0 48 469 0 41 140 0 480 663 0 61 45 0 3906 0 0

CPACHECKER∆
red
DP 1119 1252 0 156 520 0 671 500 0 480 638 0 117 60 0 3618 0 0

ESBMC∆red
syn 0 0 0 333 572 0 0 0 0 0 78 0 105 75 0 0 0 0

ESBMC∆red
DP 0 900 0 880 572 0 0 70 10 101 618 0 156 75 0 0 0 0

Difference verification with DIFFDP often more effective

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 13

Difference Verification With DIFFDP More Efficient
Then With DIFFCOND?

1

10

100

1 10 100

C
P

U
 ti

m
e

of
 d

iff
er

en
ce

 v
er

ifi
er

s
V
D

D
P

CPU time of difference verifiers VDsyn

eca05+token

sfifo+token

1

10

100

1 10 100

C
P

U
 ti

m
e

of
 d

iff
er

en
ce

 v
er

ifi
er

s
V
D

D
P

CPU time of difference verifiers VDsyn

regression

gcd+newton

1

10

100

1 10 100

C
P

U
 ti

m
e

of
 d

iff
er

en
ce

 v
er

ifi
er

s
V
D

D
P

CPU time of difference verifiers VDsyn

square+softflt

pals+eca12

Difference verification with DIFFDP more efficient for several tasks

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 14

Conclusion

Difference Condition Extractor

Difference
Detector

Condition
Generator

modified program P′

original program P

Conditional Verifier

Reducer-based Conditional Verifier

Reducer Verifier

DG(P,P’) condition

residual
program

More sophisticated, sound difference detector
More effective and efficient than full verification on several tasks
Better than existing syntax based difference detector on several tasks

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 15

