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The Modification Challenge

Program P

Verifier

✓/×

Property φ

Program P′modification
− bug fix
− refactoring
− change request
− new feature



Verifier

Property φ′

✓/×

Challenge:
Programs change frequently
Reverification necessary after each change
Reverification must keep up with changes

=⇒ Verification of every modified program infeasible!
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Suggested Solution: Only Look for New Bugs
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Approach: Overapproximate and then verify (syntactical) paths with new bugs
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Difference Verifier

Difference Condition Extractor

Difference
Detector

Condition
Generator

modified program P′

original program P

Conditional Verifier

Reducer-based Conditional Verifier

Reducer Verifier

DG(P,P’) condition

residual
program

Difference condition extractor overapproximates relevant paths
Difference detector determine relevant paths
Condition generator encodes paths into conditions

Conditional verifier restricts analysis to identified paths
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Difference Graphs Characterizing New Bugs
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r==0

!(r==0)

Paths relate to execution paths of the modified program
Any path that matches to a prefix of a new bug must be extendable s.t.

1. it stil matches to a prefix of the new bug
2. ends in a relevant (∆-)node (grey nodes)
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Condition Generation from Difference Graph
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Input: difference graph (N, E, n0,∆)
Output: extracted condition
1: Q = {n0} ∪∆; waitlist = {n0} ∪∆;
2: while (waitlist ̸= ∅) do
3: pop ns from waitlist
4: for each (np, (ℓ, op, ℓ′), ns) ∈ E with np /∈ Q

do
5: Q = Q ∪ {np};
6: waitlist = waitlist ∪ {np};
7: F = {ns | ∃(np, g, ns) ∈ E ∧ np ∈ Q ∧ ns /∈ Q};
8: return (Q ∪ F, E ∩ (Q× G′ × (Q ∪ F)), n0, F);

Theorem
Let DG(P,P′) be a difference graph for programs P and P′. The condition
generator outputs a condition that does not cover paths that cause new bugs.
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DIFFCOND: Computing Difference Graphs
Based on Syntactic Changes
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DIFFDP: Utilizing Property and Dataflow
to Compute a More Precise Difference Graphs
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Soundness Result for DIFFDP

Theorem
DIFFDP returns a difference graph.
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Evaluation

Verifiers ü ESBMC, CPAchecker, Predicate
Difference Detectors 3 All, DIFFCOND, DIFFDP

Tasks  combination tasks eca05+token, gcd+newton, pals+eca12,
sfifo+token, square+softflt
regression verification tasks

Environment � § Intel Xeon E3-1230 v5 CPU, 33 GB, Ubuntu 20.04
µ 4 processing units, 15 GB of memory
/ 15 min of CPU time
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More Effective Than Full Verification?
(All vs. DIFFDP)

eca05+token gcd+newton pals+eca12 sfifo+token square+softflt regression
(2 340+1 300) (1 352+572) (1 700+1 050) (1 206+663) (165+75) (3 936+0)

✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3

PREDICATE 912 1040 0 0 520 0 0 50 0 558 507 0 22 51 0 2595 0 0
PREDICATE∆

nat
DP 1400 985 0 156 520 0 125 75 0 594 488 0 115 75 0 2663 0 0

PREDICATE 912 1040 0 0 520 0 0 50 0 558 507 0 22 51 0 2595 0 0
PREDICATE∆

red
DP 1390 955 0 156 572 0 125 50 0 639 456 0 135 60 0 2685 0 0

CPACHECKER 633 1296 0 0 494 0 0 100 0 434 510 0 0 75 0 3931 0 0
CPACHECKER∆

red
DP 1119 1252 0 156 520 0 671 500 0 480 638 0 117 60 0 3618 0 0

ESBMC 0 1125 0 570 572 0 198 530 0 0 663 0 165 75 0 0 0 0
ESBMC∆red

DP 0 900 0 880 572 0 0 70 10 101 618 0 156 75 0 0 0 0

Difference verification with DIFFDP condition extractor often more effective
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More Efficient Than Full Verification?
(All vs. DIFFDP)
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Conditional verifier faster
Detector time sometimes too costly to be beneficial
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Difference Verification With DIFFDP More Effective
Then With DIFFCOND?

eca05+token gcd+newton pals+eca12 sfifo+token square+softflt regression
(2 340+1 300) (1 352+572) (1 700+1 050) (1 206+663) (165+75) (3 936+0)

✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3 ✓ ✗ �3

PREDICATE∆
nat
syn 1395 987 0 48 520 0 10 52 0 589 481 0 61 75 0 2599 0 0

PREDICATE∆
nat
DP 1400 985 0 156 520 0 125 75 0 594 488 0 115 75 0 2663 0 0

PREDICATE∆
red
syn 1394 975 0 48 474 0 10 95 0 642 468 0 81 45 0 2639 0 0

PREDICATE∆
red
DP 1390 955 0 156 572 0 125 50 0 639 456 0 135 60 0 2685 0 0

CPACHECKER∆
red
syn 1000 1282 0 48 469 0 41 140 0 480 663 0 61 45 0 3906 0 0

CPACHECKER∆
red
DP 1119 1252 0 156 520 0 671 500 0 480 638 0 117 60 0 3618 0 0

ESBMC∆red
syn 0 0 0 333 572 0 0 0 0 0 78 0 105 75 0 0 0 0

ESBMC∆red
DP 0 900 0 880 572 0 0 70 10 101 618 0 156 75 0 0 0 0

Difference verification with DIFFDP often more effective
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Difference Verification With DIFFDP More Efficient
Then With DIFFCOND?
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Difference verification with DIFFDP more efficient for several tasks
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Conclusion

Difference Condition Extractor

Difference
Detector

Condition
Generator

modified program P′

original program P

Conditional Verifier

Reducer-based Conditional Verifier

Reducer Verifier

DG(P,P’) condition

residual
program

More sophisticated, sound difference detector
More effective and efficient than full verification on several tasks
Better than existing syntax based difference detector on several tasks
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