

TECHNISCHE UNIVERSITÄT DARMSTADT

Taking Advantage of Properties and Dataflow in Difference Verification

Marie-Christine Jakobs joint work with Tim Pollandt

The Modification Challenge

The Modification Challenge

TECHNISCHE UNIVERSITÄT DARMSTADT

The Modification Challenge

TECHNISCHE UNIVERSITÄT DARMSTADT

Challenge:

- Programs change frequently
- Reverification necessary after each change
- Reverification must keep up with changes
- → Verification of every modified program infeasible!

Suggested Solution: Only Look for New Bugs

Suggested Solution: Only Look for New Bugs

Approach: Overapproximate and then verify (syntactical) paths with new bugs

Difference Verifier

Difference condition extractor overapproximates relevant paths

- Difference detector determine relevant paths
- Condition generator encodes paths into conditions
- Conditional verifier restricts analysis to identified paths

Difference Graphs Characterizing New Bugs

- Paths relate to execution paths of the modified program
- Any path that matches to a prefix of a new bug must be extendable s.t.
 - 1. it stil matches to a prefix of the new bug
 - 2. ends in a relevant (Δ -)node (grey nodes)

Input: difference graph (N, E, n_0, Δ) Output: extracted condition 1: $Q = \{n_0\} \cup \Delta$; waitlist $= \{n_0\} \cup \Delta$; 2: while (waitlist $\neq \emptyset$) do 3: pop n_s from waitlist 4: for each $(n_p, (\ell, op, \ell'), n_s) \in E$ with $n_p \notin Q$ do 5: $Q = Q \cup \{n_p\}$; 6: waitlist = waitlist $\cup \{n_p\}$; 7: $F = \{n_s \mid \exists (n_p, g, n_s) \in E \land n_p \in Q \land n_s \notin Q\}$; 8: return $(Q \cup F, E \cap (Q \times G' \times (Q \cup F)), n_0, F)$;

Input: difference graph (N, E, n_0, Δ) Output: extracted condition 1: $Q = \{n_0\} \cup \Delta$; waitlist $= \{n_0\} \cup \Delta$; 2: while (waitlist $\neq \emptyset$) do 3: pop n_s from waitlist 4: for each $(n_p, (\ell, op, \ell'), n_s) \in E$ with $n_p \notin Q$ do 5: $Q = Q \cup \{n_p\}$; 6: waitlist = waitlist $\cup \{n_p\}$; 7: $F = \{n_s \mid \exists (n_p, g, n_s) \in E \land n_p \in Q \land n_s \notin Q\}$; 8: return $(Q \cup F, E \cap (Q \times G' \times (Q \cup F)), n_0, F)$;

Input: difference graph (N, E, n_0, Δ) Output: extracted condition 1: $Q = \{n_0\} \cup \Delta$; waitlist $= \{n_0\} \cup \Delta$; 2: while (waitlist $\neq \emptyset$) do 3: pop n_s from waitlist 4: for each $(n_p, (\ell, op, \ell'), n_s) \in E$ with $n_p \notin Q$ do 5: $Q = Q \cup \{n_p\}$; 6: waitlist = waitlist $\cup \{n_p\}$; 7: $F = \{n_s \mid \exists (n_p, g, n_s) \in E \land n_p \in Q \land n_s \notin Q\}$; 8: return $(Q \cup F, E \cap (Q \times G' \times (Q \cup F)), n_0, F)$;

Input: difference graph (N, E, n_0, Δ) Output: extracted condition 1: $Q = \{n_0\} \cup \Delta$; waitlist $= \{n_0\} \cup \Delta$; 2: while (waitlist $\neq \emptyset$) do 3: pop n_s from waitlist 4: for each $(n_p, (\ell, op, \ell'), n_s) \in E$ with $n_p \notin Q$ do 5: $Q = Q \cup \{n_p\}$; 6: waitlist = waitlist $\cup \{n_p\}$; 7: $F = \{n_s \mid \exists (n_p, g, n_s) \in E \land n_p \in Q \land n_s \notin Q\}$; 8: return $(Q \cup F, E \cap (Q \times G' \times (Q \cup F)), n_0, F)$;

Input: difference graph (N, E, n_0, Δ) Output: extracted condition 1: $Q = \{n_0\} \cup \Delta$; waitlist $= \{n_0\} \cup \Delta$; 2: while (waitlist $\neq \emptyset$) do 3: pop n_s from waitlist 4: for each $(n_p, (\ell, op, \ell'), n_s) \in E$ with $n_p \notin Q$ do 5: $Q = Q \cup \{n_p\}$; 6: waitlist = waitlist $\cup \{n_p\}$; 7: $F = \{n_s \mid \exists (n_p, g, n_s) \in E \land n_p \in Q \land n_s \notin Q\}$; 8: return $(Q \cup F, E \cap (Q \times G' \times (Q \cup F)), n_0, F)$;

Input: difference graph (N, E, n_0, Δ) Output: extracted condition 1: $Q = \{n_0\} \cup \Delta$; waitlist $= \{n_0\} \cup \Delta$; 2: while (waitlist $\neq \emptyset$) do 3: pop n_s from waitlist 4: for each $(n_p, (\ell, op, \ell'), n_s) \in E$ with $n_p \notin Q$ do 5: $Q = Q \cup \{n_p\}$; 6: waitlist = waitlist $\cup \{n_p\}$; 7: $F = \{n_s \mid \exists (n_p, g, n_s) \in E \land n_p \in Q \land n_s \notin Q\}$; 8: return $(Q \cup F, E \cap (Q \times G' \times (Q \cup F)), n_0, F)$;

Input: difference graph (N, E, n_0, Δ) Output: extracted condition 1: $Q = \{n_0\} \cup \Delta$; waitlist $= \{n_0\} \cup \Delta$; 2: while (waitlist $\neq \emptyset$) do 3: pop n_s from waitlist 4: for each $(n_p, (\ell, op, \ell'), n_s) \in E$ with $n_p \notin Q$ do 5: $Q = Q \cup \{n_p\}$; 6: waitlist = waitlist $\cup \{n_p\}$; 7: $F = \{n_s \mid \exists (n_p, g, n_s) \in E \land n_p \in Q \land n_s \notin Q\}$;

8: return $(Q \cup F, E \cap (Q \times G' \times (Q \cup F)), n_0, F)$;

Input: difference graph (N, E, n_0, Δ) **Output:** extracted condition 1: $Q = \{n_0\} \cup \Delta$; waitlist $= \{n_0\} \cup \Delta$; 2: while (waitlist $\neq \emptyset$) do 3: pop n_s from waitlist 4: for each $(n_p, (\ell, op, \ell'), n_s) \in E$ with $n_p \notin Q$ do 5: $Q = Q \cup \{n_p\}$; 6: waitlist = waitlist $\cup \{n_p\}$; 7: $F = \{n_s \mid \exists (n_p, g, n_s) \in E \land n_p \in Q \land n_s \notin Q\}$; 8: return $(Q \cup F, E \cap (Q \times G' \times (Q \cup F)), n_0, F)$;

Input: difference graph (N, E, n_0, Δ) Output: extracted condition 1: $Q = \{n_0\} \cup \Delta$; waitlist $= \{n_0\} \cup \Delta$; 2: while (waitlist $\neq \emptyset$) do 3: pop n_s from waitlist 4: for each $(n_p, (\ell, op, \ell'), n_s) \in E$ with $n_p \notin Q$ do 5: $Q = Q \cup \{n_p\}$; 6: waitlist = waitlist $\cup \{n_p\}$; 7: $F = \{n_s \mid \exists (n_p, g, n_s) \in E \land n_p \in Q \land n_s \notin Q\}$; 8: return $(Q \cup F, E \cap (Q \times G' \times (Q \cup F)), n_0, F)$;

Theorem

Let DG(P, P') be a difference graph for programs P and P'. The condition generator outputs a condition that does not cover paths that cause new bugs.

DIFFCOND: Computing Difference Graphs Based on Syntactic Changes

DIFFCOND: Computing Difference Graphs Based on Syntactic Changes

October 5th, 2022 | Taking Advantage of Properties and Dataflow in Difference Verification | Marie-Christine Jakobs | 7

 (ℓ_0, ℓ'_0)

DIFFCOND: Computing Difference Graphs Based on Syntactic Changes

 $\downarrow \\ \{ \ell_0, \ell_0' \}$

 $\{ \ell_0, \ell'_0 \}$

 $\{r\}$ (ℓ_0, ℓ'_1)

r=x

Soundness Result for DIFFDP

TECHNISCHE UNIVERSITÄT DARMSTADT

Theorem

DIFFDP returns a difference graph.

Evaluation

Verifiers Q ESBMC, CPAchecker, Predicate

Difference Detectors 🗱 All, DIFFCOND, DIFFDP

- Tasks 🖹 Combination tasks eca05+token, gcd+newton, pals+eca12, sfifo+token, square+softflt
 - regression verification tasks

Environment 🚱 😐 Intel Xeon E3-1230 v5 CPU, 33 GB, Ubuntu 20.04

- 4 processing units, 15 GB of memory
- O 15 min of CPU time

More Effective Than Full Verification? (All vs. DIFFDP)

	eca	105+token	gcd+newton			pals+eca12			sfifo+token			square+softflt			regression			
	(2.3	140+1 300)	(1352+572)			(1700+1050)			(1 206+663)			(165+75)			(3 936+0)			
	1	×	1 3	1	×	43	1	×	4 3	1	X	43	 1 	×	7 3	1	×	4 3
PREDICATE	912	1040	0	0	520	0	0	50	0	558	507	0	22	51	0	2595	0	0
PREDICATE ^{Anar}	1400	985	0	156	520	0	125	75	0	594	488	0	115	75	0	2663	0	0
PREDICATE	912	1040	0	0	520	0	0	50	0	558	507	0	22	51	0	2595	0	0
PREDICATE ^Δ ^{red} _{DP}	1390	955	0	156	572	0	125	50	0	639	456	0	135	60	0	2685	0	0
CPACHECKER	633	1296	0	0	494	0	0	100	0	434	510	0	0	75	0	3931	0	0
CPACHECKER ^Δ ^{red} _{DP}	1119	1252	0	156	520	0	671	500	0	480	638	0	117	60	0	3618	0	0
ESBMC	0	1125	0	570	572	0	198	530	0	0	663	0	165	75	0	0	0	0
ESBMC [∆] ^{red}	0	900	0	880	572	0	0	70	10	101	618	0	156	75	0	0	0	0

Difference verification with DIFFDP condition extractor often more effective

More Efficient Than Full Verification? (All vs. DIFFDP)

- Conditional verifier faster
- Detector time sometimes too costly to be beneficial

Difference Verification With DIFFDP More Effective Then With DIFFCOND?

	eca05+token			gcd+newton			pals+eca12			sfifo+token			square+softflt			regression		
	(2 340+1 300)			(1352+572)			(1700+1050)			(1206+663)			(165+75)			(3 936+0)		
	 	×	43	1	×	43	 Image: A second s	×	۲ ₃	 Image: A second s	×	4 3	 Image: Control of the second se	×	43	 	×	4 3
$PREDICATE^{\Delta_{syn}^{nat}}$	1395	987	0	48	520	0	10	52	0	589	481	0	61	75	0	2599	0	0
$PREDICATE^{\Delta_{DP}^{nat}}$	1400	985	0	156	520	0	125	75	0	594	488	0	115	75	0	2663	0	0
$PREDICATE^{\Delta_{syn}^{red}}$	1394	975	0	48	474	0	10	95	0	642	468	0	81	45	0	2639	0	0
$PREDICATE^{\Delta_{DP}^{red}}$	1390	955	0	156	572	0	125	50	0	639	456	0	135	60	0	2685	0	0
$\begin{array}{l} CPACHECKER^{\Delta^{red}_{syn}} \\ CPACHECKER^{\Delta^{red}_{DP}} \end{array}$	1000	1282	0	48	469	0	41	140	0	480	663	0	61	45	0	3906	0	0
	1119	1252	0	156	520	0	671	500	0	480	638	0	117	60	0	3618	0	0
$ESBMC^{\Delta_{syn}^{red}}$	0	0	0	333	572	0	0	0	0	0	78	0	105	75	0	0	0	0
$ESBMC^{\Delta_{DP}^{red}}$	0	900	0	880	572	0	0	70	10	101	618	0	156	75	0	0	0	0

Difference verification with DIFFDP often more effective

Difference Verification With DIFFDP More Efficient Then With DIFFCOND?

Difference verification with DIFFDP more efficient for several tasks

Conclusion

- More sophisticated, sound difference detector
- More effective and efficient than full verification on several tasks
- Better than existing syntax based difference detector on several tasks