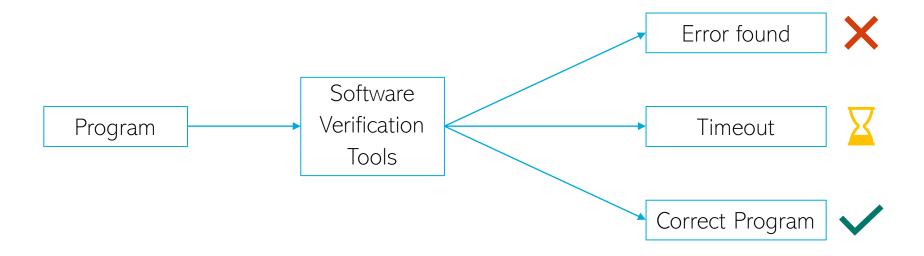

Online Performance Prediction of Software Verification: Heuristics vs Machine Learning

Master Thesis & Student Assistant's Work

Nicola Anna Thoben



Motivation

Motivation

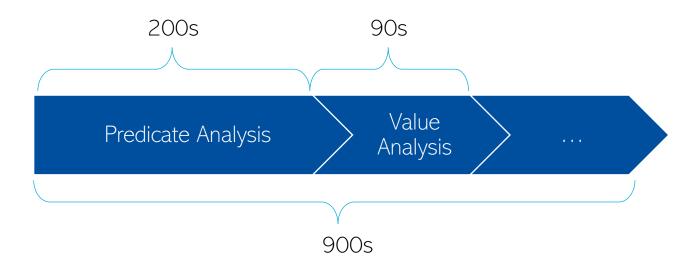
Example

loop-acceleration/simple_1-1.c

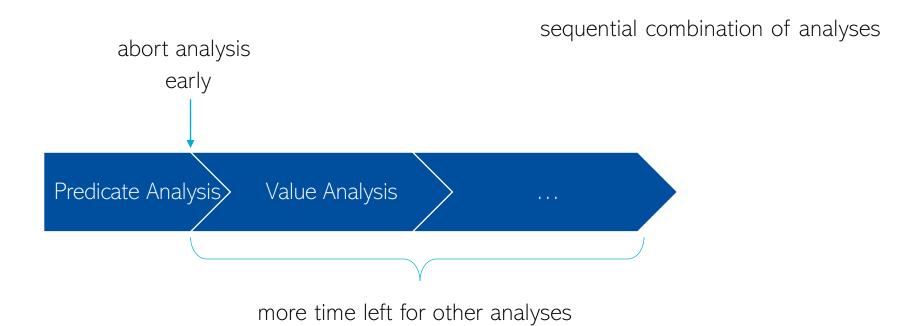
```
int main(void) {
  unsigned int x = 0;

while (x < 0x0ffffffff) {
    x += 2;
  }

__VERIFIER_assert(x % 2);
}</pre>
```


Predicates

```
(assert (<= |main::x| 0))
(assert (<= |main::x| 2))
(assert (<= |main::x| 4))
(assert (<= |main::x| 6))
(assert (<= |main::x| 8))
[..]
(assert (<= |main::x| 238))
(assert (<= |main::x| 240))
(assert (<= |main::x| 242))
(assert (<= |main::x| 244))
(assert (<= |main::x| 246))</pre>
```

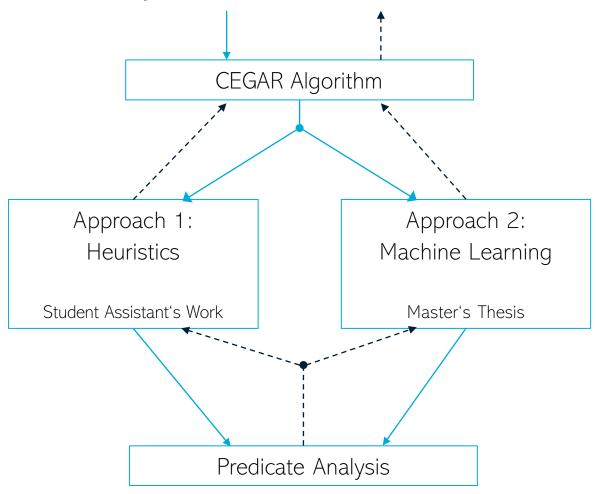


Motivation

sequential combination of analyses

Motivation

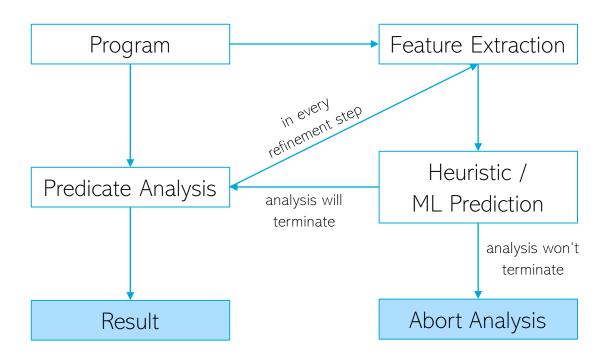
When to abort an analysis?

Approach 1: Heuristics


Student Assistant's Work

Approach 2: Machine Learning

Master's Thesis



When to abort an analysis?

System Design

Approach 1: Heuristics

Approach 1: Heuristics

Student Assistant's Work

Approach 2: Machine Learning

Master's Thesis

Approach 1: Heuristics

Heuristic 1

|ARG States| > |CFA Nodes| * factor

Heuristic 2

|ARG node a| > factor

factor = min(max loop iterations, [100, 20])

Approach 1: Results

Technique	Abort on Timeout	Abort on Success	Timeout	Success
Heuristic 1	91	44	1937	2961
Heuristic 2	469	596	1559	2409

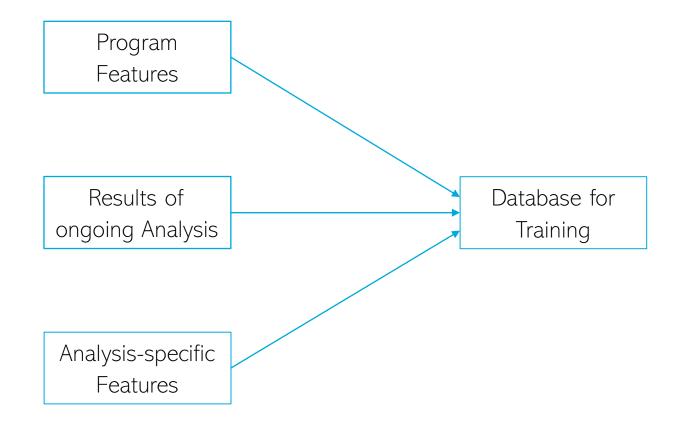
Heuristic 1

|ARG States| > |CFA Nodes| * factor

Heuristic 2

|ARG node a| > factor

Approach 2: Machine Learning


Approach 1: Heuristics

Student Assistant's Work

Approach 2: Machine Learning

Master's Thesis

Program Features

Results of ongoing Analysis

Analysis-specific Features

- Number of (nested) loops
- Number of endless loops
- Loop iterations
- Number of CFA nodes

Program Features

Results of ongoing Analysis

Analysis-specific Features

- Refinement step
- Time in seconds
- Number of ARG states in total
- Number of new ARG states since last refinement step
- Occurrence of abstraction locations on path to ARG state
- Most frequent location in ARG

Program Features

Results of ongoing Analysis

Analysis-specific Features

Atoms in abstraction formula with specific operators:

- Number of variables in abstraction formulas of states
- Highest number of boolean operations in abstraction formulas of states

Approach 2: Preprocessing

- Undersampling (Random Undersampler)
- Normalization (MinMaxScaler)
- Hyperparameter Tuning (GridSearchCV)
- Feature Selection (SelectKBest)

Approach 2: Best Result So Far

Technique	F1-Score	Precision	Recall
Random Forests	0.899	0.905	0.893

Precision
$$=\frac{TP}{TP+FP}$$

Recall
$$=\frac{TP}{TP+FN}$$

F1-Score =
$$2 * \frac{Precision * Recall}{Precision + Recall}$$

Approach 2: To Do

- ☐ Other ML Techniques
- \square More features (e.g. count predicates with increasing values (x < 2, x < 3, ...))
- ☐ Optional: Regression Model
- ☐ Insert model into CPAChecker to predict analysis outcome
- ☐ Online evaluation

Comparison: Heuristic and Machine Learning

Technique	Abort on Timeout	Abort on Success	Timeout	Success
ML: Random Forests	2018	239	10	2766
Heuristic 2	469	596	1559	2409