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Research Context and Objectives

Floating debris and marine waste Small vessels and navigation hazards

Scienti�c Challenges

Diverse targets: Various �oating objects (debris, nets, vessels) with di�erent properties

Harsh environments: Dynamic marine conditions with waves and weather e�ects

Perception Sensors Uncertainties: Noisy LiDAR measurements
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Research Context and Objectives

Floating debris and marine waste Small vessels and navigation hazards

Research Objectives

Develop robust LiDAR-based detection for �oating objects in marine environments

Implement interval-based tracking for reliable trajectory estimation of �oating objects
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LiDAR-based Detection and Tracking of Floating Objects

LiDAR Data
Floating Object Detection

(not treated in this work)

Interval Particle Filter

Robust Tracking

Target Trajectography
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Outline

1 Interval Particle Filter Methodology

Principle of LiDAR and interval measurements

Classical Particle Filter

LiDAR-based Interval Particle Filter

2 Simulation and Experimental Results

Detection experiments using 3D-LiDAR

ASV tracking with Interval Particle Filter

3 Conclusion and Future Work
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LiDAR-Based Detection: Principles and Models

LiDAR Measurement Parameters

Distance (r): Radial distance to object barycenter

Orientation (ϕ): Relative orientation between LiDAR
and object frame

Key Assumptions

Object detection available at each sampling interval

LiDAR sensor position known and �xed in inertial frame

Nonlinear uncertain system dynamics and observation
models

Measurements subject to bounded uncertainties:
[Yk] = [[rk] , [ϕk]]

= [[rk −∆rk, rk +∆rk] , [ϕk −∆ϕk, ϕk +∆ϕk]]

Detection Challenge

Reliable object identi�cation amidst environmental noise

and measurement uncertainties

Marine Detection Scenario
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Bayes Filter: Prediction and Correction

Prediction Relation: Chapman-Kolmogorov equation

pred(xk) = p(xk|y0:k−1)

=

∫
p(xk|xk−1) · p(xk−1|y0:k−1) dxk−1 (total prob.)

=

∫
p(xk|xk−1) · bel(xk−1) dxk−1 (def. of bel)

Upadte

bel(xk) = p(xk|y0:k)

= p(xk|yk,y0:k−1) (Markov)

=
1

p(yk|y0:k−1)
p(yk|xk) · p(xk|y0:k−1) (Bayes)

=
p(yk|xk) · pred(xk)

p(yk|y0:k−1)
(def. of pred)

M. Fnadi (LISIC�ULCO) Interval Particle Filter for LiDAR-Based Object Tracking 6 / 24



Bayesian Filter Algorithm

Algorithm 1: Bayesian Filter
Input: bel(xk−1), uk, yk
Output: bel(xk)
for each xk do

pred(xk)←
∫
p(xk|xk−1, uk) · bel(xk−1) dxk−1

bel(xk)← h · p(yk|xk) · pred(xk)
end

return bel(xk)

Di�cult to implement exactly because there isn't always an analytical solution for the
integral (line 4) and product (line 5)
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Classical Particle Filter
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Classical Particle Filter Algorithm

Algorithm 2: Classical Particle Filter
Input: Xi(k), wi(k) (particles and weights at time k)
Output: Xi(k + 1), wi(k + 1) (particles and weights at time k + 1)
while explore do

y(k+1) = measure(); LiDAR sensor observation
for each particle i from 1 to N do

Xi(k + 1)← f(Xi(k), u(k), σ) prediction using noisy model
wi(k + 1)← p(y(k + 1)|Xi(k + 1)) weight update

end for
for each particle i from 1 to N do

wi(k + 1) =
wi(k + 1)

∑N
j=1 wj(k + 1)

Normalization

N
e�
←

1
∑N

i=1 w2
i (k + 1)

calculation of Ne�

end for
if N

e�
< N

threshold
then

for each particle i from 1 to N do
Xi(k + 1)← resample(Xi(k + 1), wi(k + 1)) resampling

wi(k + 1)←
1

N
weight normalization

end for
end if
k ← k + 1

end while
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Why Interval Particle Filter?

Limitations of Classical Approaches

Kalman Filter: Optimal for linear Gaussian systems but limited in complex marine

environments

Particle Filter (PF): E�ective for linear and nonlinear non-Gaussian noise but requires

accurate noise distribution models

Set-Membership Methods: Provide guaranteed bounds but often yield overly

conservative estimates

Interval Particle Filter Advantage

Hybrid approach combining the probabilistic robustness of particle �lters

with the guaranteed bounded-error properties of interval analysis

F. Abdallah, A. Gning, and P. Bonnifait. Box particle filtering for nonlinear state estimation using

interval analysis. Automatica, 44(3), pp. 807�815, 2008.
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IPF Algorithm Overview
Step 1: Initialization

1 Initialization {[
x
(η)
0

]
, ω

(η)
0 =

1

Np

}Np

η=1

Np initial particle boxes

Particle initialization with bounded boxes

Uniform distribution of initial weights

Each particle represents an initial state hypothesis of the target
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IPF Algorithm Overview
Step 2: Prediction

2 Prediction {[
x
(η)
k+1

]
= [f ]

([
x
(η)
k

]
, [uk] ,

[
w

(η)
k

])}Np

η=1

Propagation with system uncertainty

Particle propagation via the target dynamic model � inclusion function [f ]

Incorporation of system uncertainties

Expansion of uncertainty intervals using inclusion function [f ]
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IPF Algorithm Overview
Step 3: Particle Box Contraction

3 Forward-Backward Contraction

Forward propagation:
{[

y
(η)
k+1

]
= [g]

([
x
(η)
k+1

])}Np

η=1

Observation error contraction:
{[

v
(η)
k+1

]
=

[
v
(η)
k+1

]
∩
(
[yk+1]−

[
y
(η)
k+1

])}Np

η=1

Measurement update:
{[

y
(η)
k+1

]
=

[
y
(η)
k+1

]
∩
(
[g]

([
x
(η)
k+1

])
+

[
v
(η)
k+1

])}Np

η=1

Innovation calculation:
{[

ỹ
(η)
k+1

]
=

[
y
(η)
k+1

]
∩
(
[yk+1]−

[
v
(η)
k+1

])}Np

η=1

Backward propagation (Overlap):
{[

x̃
(η)
k+1

]
=

[
x
(η)
k+1

]
∩ g−1

([
ỹ
(η)
k+1

])}Np

η=1

Integration of LiDAR sensor measurements (in red)

Interval contraction to eliminate over-estimation using observation inclusion function [g]
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IPF Algorithm Overview
Step 4: Correction

4 Correction

Likelihood

Likelihood
(η)
k =

nx∏
j=1

∥∥∥[x̃(η)
k+1(j)

]∥∥∥∥∥∥[x(η)
k+1(j)

]∥∥∥


Np

η=1

Weight update
{
ω
(η)
k+1 = Likelihood

(η)
k × ω

(η)
k

}Np

η=1

Likelihood calculation based on interval volumes

Particle weight update

Particles well-aligned with measurements receive higher weights
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IPF Algorithm Overview
Step 5: Estimation and Resampling

5 Estimation and Resampling

Weighting by box centers x̂k+1 =

Np∑
η=1

ω
(η)
k+1mid

([
x
(η)
k+1

])
=

Np∑
η=1

ω
(η)
k+1c

(η)
k+1

If Ne� < threshold : resampling Ne� =
1∑Np

η=1

(
ω
(η)
k+1

)2

State estimation by weighted average of centers

Calculation of sampling e�ciency

Resampling when necessary to avoid degeneracy
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Interval Particle Filter for Object Tracking

Algorithm 3: Interval Particle Filter for Object Tracking

1: Initialization:

{[
x
(η)
0

]
, ω

(η)
0 = 1

Np

}Np

η=1
Np initial particle boxes

2: for k = 1 to T do
3: [yk] = [[rk] , [ϕk]] LiDAR measurements boxes
4: for η = 1 to Np do

5: Prediction:
[
x
(η)
k

]
← [f ]

([
x
(η)
k−1

]
,
[
uk−1

]
,
[
w

(η)
k−1

])
Propagation with system uncertainty

6: Forward-Backward Contraction:

7:
[
x̃
(η)
k

]
← Contraction

(
[yk], [xk] ,

[
y
(η)
k

]
,
[
v
(η)
k

])

8: Correction: L
(η)
k
←

∏nx
j=1

∥∥∥
[
x̃
(η)
k

(j)
]∥∥∥

∥∥∥
[
x
(η)
k

(j)
]∥∥∥

and ω
(η)
k
← L

(η)
k
× ω

(η)
k

Likelihood and Weight update

9: end for

10: ω
(η)
k
←

ω
(η)
k

∑Np
η=1 ω

(η)
k

Normalize weights

11: Output x̂k ←
∑Np

η=1 ω
(η)
k

mid
([

x
(η)
k

])
State estimation

12: if
1

∑Np
η=1

(
ω
(η)
k

)2
< N

thresh
then

13: Resample

({[
x
(η)
k

]
, ω

(η)
k

}Np

η=1

)
Resample if needed

14: end if
15: end for
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Experimental Validation: LiDAR Detection at IFREMER, France

Objective: Validate LiDAR capability for �oating object detection in marine environments

Field experiments conducted using OS1 and VLP-16 3D-LiDAR systems

Multiple �oating targets under various environmental conditions

LiDAR technology proves e�ective for marine �oating object detection despite environmental challenges
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ASV Tracking Scenario using LiDAR

Predicted box particles at k

Predicted box particles at k + 1

{
[x

(i)
k

] = [f ]([x
(i)
k−1

], [uk−1]), [w
(i)
k−1

]

}Np

i=1

{
[x

(i)
k+1

] = [f ]([x
(i)
k

], [uk]), [w
(i)
k

]

}Np

i=1

X

Y

xL

yL

LiDAR sensor

x

y

k

x
y

k+1

T
ar
ge
t
T
ra
je
ct
or
y

Contraction steps with measurement box
{
[y
k ] ∩

[g][x (i)k
]

}
N
p

i=
1

{
[yk+1] ∩ [g][x

(i)
k+1

]

}Np

i=1

Objective: Track ASV position and heading using noisy LiDAR measurements

Challenge: Signi�cant sensor uncertainty and limited observations

Solution: Interval Particle Filter for robust state estimation
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System Models for ASV Tracking

Kinematic Model

State vector: Xk = [xk, yk, θk]
T (position and heading)

Xk+1 = f(Xk,Uk) =

xk +∆x cos(θk)−∆y sin(θk)
yk +∆x sin(θk) + ∆y cos(θk)

θk +∆θ


Control input: Uk = [∆x,∆y,∆θ]T (measured displacement)

LiDAR Observation Model

Measurements: range rk and orientation ϕk to known target (xk, yk)

Yk = g(Xk) =

[ √
(xk − xL)2 + (yk − yL)2

atan2(yk − yL, xk − xL)− θk

]
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Experimental Setup - INTLAB

Implementation Framework

Implementation: MATLAB with
INTLAB toolbox

Comparison: IPF vs. conventional
Particle Filter (PF)

Application: ASV trajectory tracking

Sensor: LiDAR from static known
position

Metrics: RMSE and computational time
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Tracking Performance Analysis

Qualitative Results: Trajectory Estimation

IPF maintains tighter bounds around true trajectory

Signi�cant error reduction compared to standard PF

Consistent performance with fewer particles
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Performance Evaluation

Comparative Analysis: IPF vs. Standard PF

Method Particles (Np) Time (s) Pos. RMSE (m) Angle RMSE (°)

IPF 100 0.1401 0.0354 0.8327
IPF 200 0.3409 0.0246 0.7964

PF 200 0.0213 0.2298 0.9023

PF 1000 0.0682 0.0823 0.8254

IPF demonstrates robust performance
▶ High Accuracy: IPF achieves lower RMSE under high-noise conditions
▶ Particle E�ciency: Better performance with fewer particles
▶ Guarantees: State always within computed bounds

Limitation
▶ Higher computational e�ciency
▶ Requires optimization for real-time
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Conclusion and Future Work

Conclusion

Interval Particle Filtering enables robust and e�cient object tracking using LiDAR data:

Superior accuracy with fewer particles compared to conventional methods

Guaranteed state enclosures under signi�cant uncertainty

Enhanced robustness in challenging sensor conditions

Future Work

Advanced simulations: Zonotope and ellipsoid PF,

Mobile LiDAR on ASV, and multi-target tracking

scenarios, dynamic simulations under VRX Gazebo.

Real-world validation: Experimental testing in

rivers, harbors, and coastal areas
VRX Gazebo Simulator
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