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Aim of SCAN 2025

The series of International Symposia on Scientific Computing, Computer Arithmetic,
and Verified Numerical Computations (SCAN) will be continued with the 20th edi-
tion from the 22nd to 26th of September 2025 (Monday to Friday) in Germany.

We are pleased to invite you to the Carl von Ossietzky Universität in the city of
Oldenburg, a distinguished location in the German state of Lower Saxony.

SCAN 2025 will be the meeting place for researchers from the fields of reliable
computing, software engineering, and uncertainty quantification and those from such
wide and varied areas as robotics, control, structural and civil engineering, and signal
processing.

Here, long-standing colleagues will be able to meet again in a relaxed though pro-
ductive setting after a long absence of an in-person SCAN event. The new edition
of the conference will continue to further strengthen the exchange of novel scien-
tific ideas and will contain not only classical presentations in a lecture format but
also discussion sessions focused on young researchers. In those, PhD students will
have the opportunity to present their research activities in more detail and exchange
views about them with a broad audience of more experienced scientists or other PhD
students.

Conference Venue

Library Auditorium, Uhlhornsweg 49-55, D-26129 Oldenburg:
https://uol.de/en/campus-map?wo=B

Seminar Room A01-006, Uhlhornsweg 84, D-26129 Oldenburg:
https://uol.de/en/campus-map?wo=A01

Library Auditorium

Bus stop: Uni/ Campus 
Haarentor: direction UOL

Bus stop: Uni/ Campus 
Haarentor: direction city

A01-0-006

Lunch breaks

Bus stop: 
Uhlhornsweg
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oldenburg-tourismus.de/sehenswuerdigkeiten

Oldenburg-Info im Lappan
Lange Straße 3 | 26122 Oldenburg
www.oldenburg-tourismus.de

Public toilets
Public toilets are in the city centre are
marked with this sign. The public toilets
can be used free of charge and are also
located in the Oldenburg Tourist Infomation
Office in the Lappan.

Lappan (city landmark)
The striking Gothic brick tower was added between 1467 and 1468 and 
attached ("angelappt") to the Holy Spirit Church which was built in 1394. 
In 1676 a city fire destroyed the building, but the tower was saved. Its 
baroque dome was added in 1709. Today it accommodates the Tourist 
Information Office. 

Haus Graf Anton Günther (Count Anton Günther House)
An original merchant's house with a large fresco (1908) depicting the 
sovereign Count Anton Günther riding his favourite stallion, Kranich. He 
was famous for horse breeding (Oldenburg horses). 

Degodehaus (Degode House)
The last remaining typical half-timbered house (1617) from the time 
before the great city fire. Wilhelm Degode from Jever acquired the house 
in 1860. Inside there is a painted wooden ceiling from 1645 with an 
allegorical representation of the continents known of at the time.

Altes Rathaus (Old Town Hall)
The current city hall is the seat of the Lord Mayor and was built in 
1886–1888 on the site of two previous buildings. With its triangular ground 
plan the neo-Gothic building was intentionally designed to blend into the 
surrounding public spaces.

St. Lamberti-Kirche (St. Lamberti Church)
The church was built in around the year 1200 and features a number of 
architectural contrasts. The neo-Gothic masonry surrounds an impressive 
interior which was designed in 1791 in a classicist style by Duke Peter 
Friedrich Ludwig. It was modelled on the Roman Pantheon. The church 
tower and the four corner towers, which serve as escape routes, were not 
added until the 19th century. 

Schlosswache (Palace Guardhouse)
The former Palace Guardhouse on the border to the free city was built in 
1839 in the classicist style and based on plans drawn up by Heinrich 
Strack. Until the abdication of the Grand Duke in 1918, the military guard 
and the pageant of the changing of the guard was a city tradition.

Schloss (Palace)
The palace is founded on a medieval moated castle which was built 
around the year 1100 to guard a long-distance trade route. Count Anton 
Günther had the castle rebuilt from 1607–1615 in the later Renaissance 
style. Three more extensions were subsequently added, which are visible 
in the façade. The Landesmuseum Kunst & Kultur (State Museum of Art & 
Culture) has been housed in the Palace since 1923.

Prinzenpalais (Prince’s Palace)
This classicist building served as a residence, initially for the Russian 
grandchildren of Duke Peter Friedrich Ludwig, and later for the Oldenburg 
Grand Duke. Since 2003 it has been part of the State Museum of Art & 
Culture and houses the Galerie Neue Meister (New Masters Gallery) with 
paintings and sculptures from the 19th and 20th centuries from the 
Romantic to the post-war period.

Augusteum (art museum) / Oldenburger Kunstverein (art association)
Opened in 1867 as the first art museum in the north west (Grand Ducal 
Painting Gallery). Built in the style of the Florentine Renaissance,  it is 
one of the most beautiful gallery buildings in northern Germany today. As 
part of the State Museum, it houses the Old Masters Collection with 
exhibits from the end of the Middle Ages to the dawn of modernity. 
Founded in 1843, the Oldenburg Art Association is one of the oldest in 
Germany. It is dedicated to promoting contemporary art and is used as a 
venue for exhibitions and concerts. 
 
Landesmuseum für Natur und Mensch (State Museum of Man and Nature)
Founded in 1836 by Grand Duke Paul Friedrich August, it is one of the 
oldest museums in Germany. It is dedicated to the richness of the 
landscape of north-western Germany and relates the history of the 
formation of the moorlands, the Geest (coastal moorlands), the coast 
and the marshlands and also shows how it has been affected by mankind.

Elisabeth-Anna-Palais (Elisabeth-Anna Palace) 
Hereditary Grand Duke Friedrich August built the palace in 1896 in Dutch 
brick Renaissance style for his wife Elisabeth Anna of Prussia. After the 
abdication of the Grand Duke in 1918 it became the property of the state. 
The Social Court has been housed here since 1954. Exhibitions of artists 
from the region are regularly held in the foyer.

Schlossgarten (Palace Gardens)
The park extends over an area of around 16 hectares and was built at the 
beginning of the 19th century. It was laid out by Duke Peter Friedrich 
Ludwig in the style of an English landscape garden. The first 
rhododendrons were planted here in 1828. The Palace Gardens with the 
ancient trees are a tranquil haven all year round. 

Pulverturm (Powder Tower)
The Powder Tower is the only remaining structure of Oldenburg's city 
fortifications. It was built in 1529 as a gun turret. In the 18th and 19th 
centuries it was used to store gunpowder, which is how it was given its 
name. Since 1996 it has been used as a unique exhibition venue for 
contemporary art.

Oldenburgisches Staatstheater (Oldenburg State Theatre)
In 1833 the first wooden theatre was built in Oldenburg. A larger and more 
imposing new building burned down in 1891. Two years later the theatre 
was opened in its current impressive form and has a captivating 
classicist portico. The "Kleines Haus” (Small House) was added as an 
extension in 1998. The Theatre currently encompasses seven genres. 

Peter Friedrich Ludwigs Hospital (Cultural Centre)
The building was completed in 1841 and originally served as a hospital. It 
is locally known as the "PFL". It is regarded as the most important 
example of classicist architecture in Oldenburg. In the spring of 1984, 
after 143 years the PFL was closed as a hospital. Today it houses the city 
library and various cultural institutions.

Haus für Medienkunst (House of Media Art)
The House of Media Art Oldenburg shows and discusses contemporary 
media art. It presents international, innovative art and invites people to 
exchange ideas. Dialogue is promoted through changing exhibitions, talks 
and workshops.

Horst-Janssen-Museum (art museum) and 
City Museum (under construction)
The Horst Janssen Museum is dedicated to the visual arts on paper. The 
permanent exhibition focuses on the life and work of the draughtsman, 
etcher, woodcutter, poster artist, illustrator, writer and graphic artist 
Horst Janssen, who grew up in Oldenburg.
The City Museum was built with assets from a foundation set up by the 
Oldenburg citizen and collector Theodor Francksen. The building is 
currently under construction (opening 2026). 

Oldenburger Computer-Museum e.V. (open Tuesdays from 6 to 9 p.m.)
The museum contains a display of historical computer systems, focusing 
on home computers from the 1970s and 80s. Video games, game consoles, 
arcade machines and pinball machines are also included in the exhibition. 
The museum is unique in Germany in that the exhibits are still functional 
and can be used.

Oldenburger Hauptbahnhof (Main Train Station)
The main train station was inaugurated in 1915 in its present form and 
architecturally blends into the region with its style of farmhouses of that 
time. The entire station ensemble with its Art Nouveau structure is 
protected. The track hall is a unique steel and glass construction and is 
currently being renovated.

Alter Stadthafen (Old City Port)
In 1345 Oldenburg was granted city rights and was therefore able to 
access maritime trade. In the 16th century the city evolved to become a 
successful maritime shipping port. Today it is one of the most important 
inland ports in Lower Saxony. The harbour promenade with its restaurants 
and cafés is a popular destination and meeting place.   
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SCAN 2025 – 20th International Symposium on Scientific Computing, 

Computer Arithmetic, and Verified Numerical Computations 

Monday, September 22 Monday, September 22

e-mail: andreas.rauh@uni-oldenburg.de 

www.uol.de/informatik/dcis

www.interval-methods.de

September 22-26, 2025

CoProD: 17th International Workshop on Constraint 

Programming and Decision Making – Library Auditorium
8:30-8:35 Opening

8:35-9:00 Luc Jaulin
Optimal separator for an hyperbola; Application to 

localization

9:00-9:25 Milan Hladík

Robustness Properties of Absolute Value Linear 

Programming Problems and Relations to Interval 

Analysis

9:25:9:50
Ana Tapia-Rosero, Olga Kosheleva, and Vladik 

Kreinovich

What is the most natural way to propagate subjective 

interval uncertainty -- and why

9:50-10:15
Niklas Winnewisser, Michael Beer, Olga 

Kosheleva, and Vladik Kreinovich
How to combine subjective intervals: a natural idea

10:15-10:40

Niklas Winnewisser, Michael Beer, Victor 

Timchenko, Yuriy Kondratenko, Olga Kosheleva, 

and Vladik Kreinovich

Why midpoint, why radius (half-width): invariance-based 

numerical characteristics of an interval and how they are 

related to color vision and color optical computing

10:40-11:05

Ildar Z. Batyrshin, Luis A. Villa-Vargas, Nailya I. 

Kubysheva, Olga Kosheleva, Muhammad Ahmad, 

and Imre J. Rudas

Complex Chemical and Biochemical Reactions: Maybe 

Fuzzy Techniques Can Help

11:05-11:30
Martine Ceberio, Olga Kosheleva, and Vladik 

Kreinovich
Why topology helps to detect cyber-intrusions

11:30-11:55
Jean Rendon, Clariandys Rivera, Afshin Gholamy, 

and Leobardo Valera

Pre-Hashing as a Cryptographic Tool for Securing 

Entrepreneurial Ideas

11:55-12:20
Andrea Luces, Jean Rendon, Afshin Gholamy, and 

Leobardo Valera

Predicting Subsurface Soil Parameters Using Surface 

and Satellite Data with Machine Learning Techniques

SCAN 2025: Library Auditorium

14:00-14:30 Opening (Ekaterina Auer, Marit Lahme, Astrid Nieße, Andreas Rauh)

Moore Prize Lecture (Chair: Vladik Kreinovich)

14:30-16:00
Tristan Buckmaster, Gonzalo Cao-Labora, Javier 

Gomez-Serrano
Smooth imploding solutions for 3D compressible fluids

Regular Session: Special Functions (Chair: Luc Jaulin)

16:30-17:00
Hiroaki Miyauchi, Taisei Asai, Masahide Kashiwagi 

and Akitoshi Takayasu

Constructing the Bessel function rigorously via the power 

series arithmetic

17:00-17:30
Lucas Si Larbi, Eric Lucet and Julien Alexandre Dit 

Sandretto

Interval Uniform, Non-Uniform, Rational, Non-Rational B-

spline Curves

PhD Poster Session

Tuesday, September 23 Tuesday, September 23

SCAN 2025: Library Auditorium

Plenary Lecture (Chair: Ekaterina Auer)

9:00-10:30 Siegfried Rump Verified error bounds for sparse systems

Regular Session A: Formal Verification (Chair: Takeshi Ogita)

11:00-11:30
Antoine Besset, Joris Tillet and Julien Alexandre 

Dit Sandretto

Formal Verification of State and Temporal Properties of 

Neural Network-Controlled Systems

11:30-12:00 Martin Fränzle, Paul Kröger and Anna Nienaber
Exploiting the Impossible: Towards Resilience of 

Decision Making Against Misperceptions

12:00-12:30 Ryoki Endo and Xuefeng Liu
Computer-assisted proof of the simplicity of the second 

Dirichlet eigenvalue for non-equilateral triangles

SCAN 2025: A01-0-006

Regular Session B: Tools and Implementations (Chair: Simon Rohou)

11:00-11:30 Ryoga Iwanami
Verry: an open-source package for verified computation 

written in Python 3

11:30-12:00
Pierre Filiol, Luc Jaulin, Theotime Bollengier and 

Jean-Christophe LeLann

Hardware accelerated interval arithmetic for mobile 

robotics using RISC-V ISA extension

12:00-12:30 Jiří Khun and Jan Schmidt
Towards Interval Arithmetic in TensorFlow: A Comparison 

of Approaches

QR code and link to the detailed conference program

www.uol.de/en/scan2025/program

Wednesday, September 24 Wednesday, September 24

SCAN 2025: Library Auditorium

Plenary Lecture (Chair: Nathalie Revol)

9:00-10:30 Andreas Rauh
Interval and Set-Based Approaches for Control and State 

Estimation: Their Use for Offline and Online Purposes

Regular Session A: PDEs (Chair: Anna Gierzkiewicz)

11:00-11:30
Kazuaki Tanaka, Ryoga Iwanami, Kaname Matsue 

and Hiroyuki Ochiai

Green-Representable Solutions: Reformulating Sub- and 

Super-solution Theory for Poisson's Equation

11:30-12:00
Taisei Asai, Kazuaki Tanaka, Satoshi Tanaka and 

Shin'Ichi Oishi

Verified Computation of All Positive Solutions to a 

Hénon-Type Boundary Value Problem

12:00-12:30 Akitoshi Takayasu and Jean-Philippe Lessard
Semigroup approach for validating solutions to 

semilinear parabolic PDEs

SCAN 2025: A01-0-006

Regular Session B: Uncertainty Quantification (Chair: Luc Jaulin)

11:00-11:30 Olga Kosheleva and Vladik Kreinovich
For statistical analysis of big data, interval uncertainty is 

needed

11:30-12:00

Jahangir Alam, Ismail Hossain, Tausif Hossain, Md 

Nuruzzaman Sojib, Olga Kosheleva and Vladik 

Kreinovich

How to compare situations in which we measure different 

quantities with different uncertainty

12:00-12:30 Ekaterina Auer and Wolfram Luther
Towards Fair and Explainable Medical Risk Prediction 

Software via Dempster-Shafer Theory



SCAN 2025 – 20th International Symposium on Scientific Computing, 

Computer Arithmetic, and Verified Numerical Computations 

Thursday, September 25 Thursday, September 25

e-mail: andreas.rauh@uni-oldenburg.de 

www.uol.de/informatik/dcis

www.interval-methods.de

September 22-26, 2025

QR code and link to the detailed conference program

www.uol.de/en/scan2025/program

Friday, September 26 Friday, September 26

SCAN 2025: Library Auditorium

Plenary Lecture (Chair: Andreas Rauh)

9:00-10:30 Christoph Matheja Automated Verification of Discrete Probabilistic Programs

Regular Session A: Dynamic Systems (Chair: Robert Dehnert)

11:00-11:30
Robert Szczelina, Anna Gierzkiewicz and Jakub 

Kural

Investigating chaos in Delay Differential Equations with 

rigorous numerical methods

11:30-12:00
Jakub Kural, Anna Gierzkiewicz and Robert 

Szczelina

Computer assisted proof of existence of periodic 

solutions to ENSO delay differential equation model

12:00-12:30 Théo Le Terrier, Marie Babel and Vincent Drevelle
Ultra-wideband Based Smart Wheelchair Pose 

Estimation using Interval Analysis

Regular Session A: Dynamic Systems (Chair: Marit Lahme)

14:00-14:30 Andreas Rauh and Friederike Bruns
Set-Based Contracts for Systematic Controller Tuning in 

Interconnected Dynamic Systems

14:30-15:00
Anna Gierzkiewicz, Maciej Capinski and Pau 

Martin

Oscillating orbits in the Sitnikov model: equal masses 

case

15:00-15:30 Mohamed Fnadi and Régis Lherbier Interval Particle Filter for LiDAR-Based Object Tracking

16:00 Closing of SCAN 2025

SCAN 2025: A01-0-006

Regular Session B: Optimization (Chair: Ekaterina Auer)

11:00-11:30 Mihály Gencsi and Boglárka G.-Tóth
Improvements of the Geometrical Test in Interval Branch 

and Bound methods

11:30-12:00
Verlein Radwan, Simon Rohou and Gilles 

Trombettoni

Exhaustive Interval-based 2-D Shape Registration Under 

Similarity Transformation

12:00-12:30 Maël Godard, Luc Jaulin and Damien Massé
Adaptative parallelepipedic approximation of the image 

of a set by a nonlinear function

Regular Session B: Optimization (Chair: Nathalie Revol)

14:00-14:30
Yuki Uchino, Katsuhisa Ozaki and Toshiyuki 

Imamura

High-Performance Emulation of Matrix Multiplication 

using INT8 Matrix Engines and its Error Analysis

14:30-15:00 Lorenz Gillner and Ekaterina Auer
Efficient Acceleration Strategies for Interval Branch-and-

Bound Type Methods

15:00-15:30
Diego Romano, Ekaterina Auer, Francesco 

Gregoretti and Lorenz Gillner

GPU-Accelerated Algorithmic Differentiation For Reliable 

Computing: Comparing Different Architectures

SCAN 2025: Library Auditorium

Plenary Lecture (Chair: Andreas Rauh)

9:00-10:30 Tino Teige

Bringing Formal Methods from Academia to Real-World 

Applications in Industry: My Personal Two-Decades-

Journey

Regular Session A: Estimation (Chair: Bernd Tibken)

11:00-11:30 Quentin Brateau, Fabrice Le Bars and Luc Jaulin Separator for the remoteness constraint

11:30-12:00
Damien Esnault, Simon Rohou, Fabrice Le Bars 

and Luc Jaulin

Computing Interval Detection-Probability Grids via 

Monte-Carlo method for Underwater Robotics

12:00-12:30 Marit Lahme and Andreas Rauh
Set-Based Identification of Characteristic Curves and Its 

Challenges for Real-Life Applications

Regular Session A: Linear Systems and Linear Algebra: Library Auditorium (Chair: Siegfried Rump)

14:30-15:00 Haruto Kijima and Takeshi Ogita

Fast Implementation of Interval Matrix Multiplication 

Using Infimum-Supremum Representation With SIMD 

Operations

15:00-15:30
Takeshi Terao, Yoshitaka Watanabe and Katsuhisa 

Ozaki

Verification of Singular Values under Oblique Inner 

Product Space for Matrices

15:30-16:00 Katsuhisa Ozaki and Toru Koizumi
Tight Enclosure of Matrix Multiplication using Fused 

Multiply-Add

Regular Session A: Neural Networks: Library Auditorium (Chair: Vladik Kreinovich)

16:30-17:00 Attila Szász and Balázs Bánhelyi Parameter Robustness of Neural Networks

17:00-17:30 Tibor Csendes
Interval Based Verification of Adversarial Example Free 

Zones for Neural Networks

SCAN 2025: A01-0-006

Regular Session B: Uncertainty Quantification (Chair: Tibor Csendes)

11:00-11:30 Olga Kosheleva and Vladik Kreinovich
Inconsistencies in Fuzzy Estimations: Kaucher Arithmetic 

Naturally Appears

11:30-12:00
Miroslav Svitek, Olga Kosheleva and Vladik 

Kreinovich

Shapley Value Under Interval Uncertainty Revisited: Why 

Seemingly Natural Axiomatic Approach Is Not Fully 

Adequate

12:00-12:30 Luc Jaulin
A new wrapper for a reliable resolution of 

underdetermined nonlinear equations

Regular Session B: Optimization (Chair: Julien Alexandre Dit Sandretto)

14:30-15:00 Milan Hladík
Linear Programming Problems with Absolute Values and 
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C. Kotecký and M. Hlad́ık : Basis stability in interval quadratic programs
70

J. Kural, A. Gierzkiewicz, and R. Szczelina: Computer assisted proof of ex-
istence of periodic solutions to ENSO delay differential equation model
84

M. Lahme and A. Rauh: Set-Based Identification of Characteristic Curves
and Its Challenges for Real-Life Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 49

T. Le Terrier, M. Babel, and V. Drevelle: Ultra-wideband Based Smart Wheel-
chair Static Pose Estimation using Interval Analysis . . . . . . . . . . . . . . . . . 86



SCAN 2025, Sept. 22-26, 2025, Oldenburg, Germany VII

C. Matheja: Automated Verification of Discrete Probabilistic Programs 80

H. Miyauchi, T. Asai, M. Kashiwagi, and A. Takayasu: Constructing the Bessel
function rigorously via the power series arithmetic . . . . . . . . . . . . . . . . . . . . 2

K. Ozaki and T. Koizumi : Tight Enclosure of Matrix Multiplication using
Fused Multiply-Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

V. Radwan, S. Rohou, and G. Trombettoni : Exhaustive Interval-based 2-D
Shape Registration Under Similarity Transformation . . . . . . . . . . . . . . . . . 98

A. Rauh: Interval and Set-Based Approaches for Control and State Esti-
mation: Their Use for Offline and Online Purposes . . . . . . . . . . . . . . . . . . . . 26

A. Rauh and F. Bruns : Set-Based Contracts for Systematic Controller Tun-
ing in Interconnected Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A. Rauh and M. Lahme: Observer-Based Approaches for a Verified Simula-
tion and Pseudo State Estimation of Fractional Dynamic Systems . . 77

D. Romano, E. Auer, F. Gregoretti, and L. Gillner : GPU-Accelerated Algorith-
mic Differentiation For Reliable Computing: Comparing Different Archi-
tectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

S.M. Rump: Verified Error Bounds for Sparse Systems . . . . . . . . . . . . . . . . . . 9

L. Si Larbi, E. Lucet, and J. Alexandre dit Sandretto: Interval Uniform, Non-
Uniform, Rational, Non-Rational B-spline Curves . . . . . . . . . . . . . . . . . . . . . 5

M. Svitek, O. Kosheleva, and V. Kreinovich: Shapley Value Under Interval Un-
certainty Revisited: Why Seemingly Natural Axiomatic Approach Is Not
Fully Adequate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A. Szász and, B. Bánhelyi : Parameter Robustness of Neural Networks 57

A. Takayasu and J.-P. Lessard : Semigroup approach for validating solutions
to semilinear parabolic PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

K. Tanaka, R. Iwanami, K. Matsue, and H. Ochiai : Green-Representable Solu-
tions: Reformulating Sub- and Super-solution Theory for Poisson’s Equa-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

T. Teige: Bringing Formal Methods from Academia to Real-World Appli-
cations in Industry – My Personal Two-Decades-Journey – . . . . . . . . . . 43

T. Terao, Y. Watanabe, and K. Ozaki : Verification of Singular Values under
Oblique Inner Product Space for Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



SCAN 2025, Sept. 22-26, 2025, Oldenburg, Germany VIII

Y. Uchino, K. Ozaki, and T. Imamura: High-Performance Emulation of Ma-
trix Multiplication using INT8 Matrix Engines and its Error Analysis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



SCAN 2025, Sept. 22-26, 2025, Oldenburg, Germany 1

Monday, September 22, 2025

Library Auditorium

8:30–12:20
CoProD: 17th International Workshop on Constraint
Programming and Decision Making

12:30–14:00 Lunch Break – Food truck

14:00–14:30 Opening

14:30–16:00
Moore Prize Lecture
Tristan Buckmaster, Gonzalo Cao-Labora, Javier Gomez-Serrano:
Smooth imploding solutions for 3D compressible fluids

16:00–16:30 Coffee Break

16:30–17:00 Regular Session: Special Functions

16:30–17:00
Hiroaki Miyauchi, Taisei Asai, Masahide Kashiwagi: and
Akitoshi Takayasu: Constructing the Bessel function rigorously
via the power series arithmetic

17:00–17:30
Lucas Si Larbi, Eric Lucet and Julien Alexandre Dit Sandretto:
Interval Uniform, Non-Uniform, Rational, Non-Rational B-
spline Curves

17:30–18:30 PhD Poster Session

All posters presented in this PhD session are included subsequently together with the associated abstract.



SCAN 2025, Sept. 22-26, 2025, Oldenburg, Germany 2

Constructing the Bessel function rigorously via
the power series arithmetic

Hiroaki Miyauchi1, Taisei Asai2, Masahide Kashiwagi2,
Akitoshi Takayasu3

1 Graduate School of Science and Technology, University of Tsukuba
s2530138@u.tsukuba.ac.jp

2 Faculty of Science and Engineering, Waseda University
captino@fuji.waseda.jp

kashi@waseda.jp
3 Institute of Systems and Information Engineering, University of Tsukuba

takitoshi@risk.tsukuba.ac.jp

Keywords: Power series arithmetic, Bessel function, Interval arithmetic

Introduction

This study introduces a verified numerics framework for integrals involving the Bessel
function that arise in the analysis of nonlinear elliptic boundary value problems.
Existing quadrature schemes rarely control rounding and truncation errors rigorously,
and the accuracy of their results cannot be guaranteed. In particular, to the best of
our knowledge no existing approach encloses in interval form integrals of the type

∫ 1

0

p+1∏

i=1

Jni
(νni,mi

r)rdr, ni = 0, 1, 2, . . . , mi = 1, 2, 3, . . . ,

where Jn(x) is the n-th order Bessel function of the first kind and νn,m denotes the
m-th positive root of Jn(x). This integral corresponds to the Galerkin projection in
semilinear elliptic equations (1) shown at the end of this abstract.

There exist methods for rigorously computing the Bessel function, for example,
within the Arb library [1]. This is a C library for rigorous real and complex arithmetic
with arbitrary precision based on ball arithmetic that implements algorithms for
computing Jn(x) and Yn(x) (the n-th order Bessel function of the second kind) in the
real and complex domains. However, Arb lacks built-in tools for verifying quadratures
of the Bessel function. This makes it difficult to account for truncation errors in such
quadratures directly.

With the background mentioned above, we have developed a method that per-
forms verified numerics for integrals involving the Bessel function, enclosing the in-
tegral values directly and rigorously in interval form.

In this talk, providing the Bessel function using the power series arithmetic in
the kv library [2], a collection of C++ libraries for verified numerical computations,
we can obtain rigorous enclosures of the Bessel function via interval arithmetic. We
apply the Schlömilch’s diffrential recurrence formula [3] to construct the power series
expansion of Jn(x). All coefficients of the power series up to degree n are rigorously
included in the interval coefficients. The remainder term is also rigorously included
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in the coefficient of the highest degree. This yields a verified power series representa-
tion of Jn(x). Additionally, the verified power series representation provides interval
inclusion of the values of integrals such as

∫ 1

0

J0(ν0,1r)rdr,

∫ 1

0

J0(ν0,1r)
3rdr.

Selected results in practice

Furthermore, using the power series expression, the verified quadrature of the Bessel
function is rigorously included as follows:

∫ 1

0

J0(ν0,1r)rdr ∈
[
0.215877403509842313808

]

∫ 1

0

J0(ν0,1r)
3rdr ∈

[
0.0974613010685970874366

]

∫ 1

0

J1(ν0,1r)J1(ν0,2r)rdr ∈
[
−2.35055030994e−15, 2.39776731456e−15

]

∫ 1

0

J0(ν0,1r)J1(ν1,1r)J2(ν2,1r)rdr ∈
[
0.036053739292458323183674

]

∫ 1

0

J8(ν8,1r)J9(ν9,1r)J10(ν10,1r)rdr ∈
[
0.004640119537345774552999569

]
,

where the interval [0, 1] is partitioned into sixteen sub-intervals and the Bessel func-
tion is expanded by the power series up to the degree 20.

For applications of the provided method, we aim to consider verified numerics for
solutions to semilinear elliptic equations on the unit disk.

{
−∆u = f(u) in Ω
u = 0 on ∂Ω,

(1)

where Ω = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π} ∈ R2, f(u) is a polynomial of order p.
Since the Bessel function is the eigenfunction of the Laplacian on the unit disk,

we can expect a highly accurate approximation of the boundary value problems. To
this end, the methods for integrals introduced in this abstract are essential. This
prospective application to the problem in (1) serves as the primary motivation for
this study.

References
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1. Background
Verified numerical computation of solutions to nonlinear boundary value problems
is a fundamental challenge in scientific computing. On the unit disk, Fourier-Bessel
expansions naturally appear, which require the evaluation of multiple integrals of
Bessel functions: to ensure reliable error bounds. The Fourier-Bessel expansion
leads to the

∫ 1

0

( p+1∏

i=1

Jni
(νni,mi

r)
)
r dr, ui = 0, 1, 2, . . . , mi = 1, 2, . . . ,

where Jn(x) is the Bessel function of the first kind and νn,m denotes the m-th
positive root of Jn. Existing quadrature schemes rarely provide rigorous control of
rounding and truncation errors, so the reliability of such integrals cannot be
guaranteed. This motivates us to develop a verified numerics framework based on
Power Series Arithmetic (PSA).

2. Objective
The goal of this study is to establish a verified numerics framework for integrals
involving Bessel functions that naturally arise in Fourier-Bessel expansions of
nonlinear elliptic boundary value problems. Specifically, we construct rigorous
power series representations of Jn(x) using Type-II Power Series Arithmetic (PSA)
in the kv library. This approach encloses all coefficients and remainder terms in
interval form, enabling verified evaluation of Bessel integrals such as∫ 1

0

J0(ν0,1r) r dr,

∫ 1

0

J1(ν0,1r)
3 r dr,

which cannot be rigorously handled by conventional quadrature methods. The
verified quadrature developed here is designed as a foundation for reliable Galerkin
projections and residuals bounds in semilinear elliptic PDEs on the unit disk.

3. Methods (Type-II PSA for Jn(x))

Type-II Power Series Arithmetic (PSA).
We are using Type-II PSA for verified computations. On a fixed domain [t1, t2],
truncated power series are stored with interval coefficients. Terms up to degree n
are kept explicitly, and all higher-order contributions are absorbed in to the top
coefficient, enduring rigorous error control.
Construction of Bessel functions.
Schlömilch’s differential recurrence provides a basis for recursive differentiation:

J ′
n(x) =

1
2

(
Jn−1(x)− Jn+1(x)

)
.

More generally, higher derivatives satisfy

J (k)
n (x) =

1

2k

k∑

r=0

(−1)r
(
k

r

)
Jn−k+2r(x).

Using these formulas, we construct verified Taylor expansions of Jn(x), enclosing
all coefficients and the remainder in interval form. This yields a power series
representation that is both rigorous and directly usable in computations.
Verified quadrature.
To evaluate integrals of Bessel functions required in Galerkin projections, we
proceed as follows:

”The interval [0, 1] is subdivided into smaller subintervals, so that polynomial
approximations remain accurate.”

”On each subinterval, Jn(x) is expanded by Type-II PSA up to degree n, and
the product of series is computed with interval coefficients.”

”Term-by-term integration is carried out analytically, which provides an
interval polynomial y(t). evaluating y(∆) yields an enclosure of the integral
over that subinterval.”

”The contributions of all subintervals are summed, resulting in a global
enclosure of the target integral.”

4-1. Results: Verified Maclaurin expansions of J0(x)

As a demonstration, we present a verified Maclaurin expansions of J0(x) on the
interval [0, 1] using Type-II PSA with degree 4.

J0(x) ∈ [0.999999, 1.00001] + [−8.9× 10−16, 8.9× 10−16] x

+ [−0.250001,−0.249999] x2 + [−1.7× 10−16, 1.7× 10−16] x3

+ [0.005291, 0.020030] x4

J0(x): Overall comparison J0(x): Focused view

4-2. Results: Verified integrals

The following examples show verified enclosures of Bessel integrals, which play a
central role in Galerkin projections for semilinear elliptic PDEs. In these
computations, the interval [0, 1] is partitioned into sixteen sub-intervals, and the
Bessel functions are expanded by power series up to degree 20.

∫ 1

0

J0(ν0,1r) r dr ∈
[
0.215877403509842313808

]

∫ 1

0

J0(ν0,1r)
3 r dr ∈

[
0.0974613010685970874366

]

∫ 1

0

J1(ν0,1r)J1(ν0,2r) r dr ∈
[
−2.35055030994× 10−15, 2.39776731456× 10−15

]

∫ 1

0

J0(ν0,1r)J1(ν1,1r)J2(ν2,1r) r dr ∈
[
0.036053739292458323183674

]

∫ 1

0

J8(ν8,1r)J9(ν9,1r)J10(ν10,1r) r dr ∈
[
0.004640119537345774552999569

]

5. Discussion & Conclusion
Our study demonstrates that Type-II PSA provides a rigorous way to represent
Bessel functions and to evaluate their integrals with guaranteed error bounds.
By enclosing both coefficients and remainder terms in interval form, we obtained
verified power series expansions and quadrature results that are not achievable by
conventional methods. These verified integrals form the essential components of
Galerkin projections for semilinear elliptic PDEs on the unit disk.{

−∆u = f (u) in Ω
u = 0 on ∂Ω,

(1)

Ω = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π} ∈ R2, f (u) is a polynomial of order p.
While the proposed Type-II PSA framework ensures rigorous enclosures, its
computational cost increases rapidly with higher series degrees and finer partitions.
This indicates that PSA alone is not sufficient for practical large-scale
computations. A promising direction is to design hybrid methods that use PSA
where it is most effective and rely on asymptotic expansions or optimized
recurrence relations in other regions, thereby achieving both rigor and efficiency.

6. Outlook
Building on this framework, we plan to:

”Integrate verified quadrature into full residual-norm estimation for elliptic
PDEs (1).”

”Develop hybrid algorithms that use PSA near the origin and asymptotic
expansions for large arguments.”

”Extend the method to more general oscillatory integrals and
higher-dimensional spectral problems.”

These advances aim to establish a practical and scalable tool for verified numerical
analysis of nonlinear elliptic PDEs, contributing to reliable scientific computing in
broader contexts.
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Figure 1: (a) Exactly evaluated Interval U-NR-BS. (b) Pseudo-Interval U-NR-BS
built from the successive midpoints of parameter discretized intervals of (a). (c)
Interval U-NR-BS with a finner parameter discretization than (a). These three curves
are made from the same control boxes [Pi].

Uniform or Non-Uniform, Rational or Non-Rational B-Spline curves (U-NU-R-
NR-BS) are widely used in computer aided design, computer graphics, and robotics [3,
6]. These polynomial curves have powerful properties and, using the deBoor-Cox
recurrence formula [1, 2], they are simple to compute. U-NU-R-NR-BS are param-
eterized and defined by a finite number of control points. A natural way to bound
these curves is to consider both the parameter and control points as intervals. How-
ever, as they are constructed from a sum of polynomial basis functions, and, as the
pessimism of the natural interval evaluation is cumulative, the resulting bounds are
often worthless. It is therefore necessary to bound basis functions with other ap-
proaches. In general, to reduce the pessimism, the centered form, the Taylor form
or the affine arithmetic are used [5]. For the same reason, the modal arithmetic was
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used to evaluate interval Bézier curves in [4]. Another elegant way to avoid interval
dependencies is to discretize the parameter of basis functions [7, 8, 9]. These last are
therefore exactly evaluated. The discretized basis obtained generates non-continuous
U-NU-R-NR-BS. This pseudo-interval approach is only suitable for applications that
do not require interval guarantees, see Figure 1.

We propose: (i) a comprehensive analysis of interval extensions of U-NU-R-NR-
BS; (ii) operators on interval U-NU-R-NR-BS such as ∩, ∪; (iii) operators between
interval U-NU-R-NR-BS and real numbers or matrices; (iv) discussion about the
wrapping effect.
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Fig 3. Uniform non-rational and rational B-splines. The rational 

equation allows us to increase the weight     of certain control points. 

In this figure, the weight      of the control point P3 was increased.

Interval Uniform, Non-Uniform, Rational, Non-Rational

B-spline Curves
Lucas SI LARBI1,2, Eric LUCET1 and Julien ALEXANDRE DIT SANDRETTO2

Objective: Use B-spline curves as a support solution of an Interval branch and Bound (IB&B)

1 Université Paris-Saclay, CEA, LIST, DIASI/SRI/LCSR, Palaiseau, France

2 U2IS, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France 

L. Si Larbi, E. Lucet, J. A. D. Sandretto, Interval Uniform, Non-Uniform, Rational, Non-Rational B-spline Curves, SCAN2025.

G. Shen, N. M. Patrikalakis, Numerical and geometric properties of interval B-splines. International Journal of Shape Modeling, 1998.

L. Piegl, W. Tiller, The NURBS Book. Monographs in Visual Communication. Springer Berlin Heidelberg, 1996.

L. Si Larbi, E. Lucet, J. A. D. Sandretto, Optimal local path Planner over Receding Horizon using Open Interval B-spline, Acta Cybernetica, 2025 (in proceeding).

SCAN2025

B-spline
u, Pi

Made from:

• A discretized parameter u.
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• A discretized parameter u.
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• Properties of B-splines remain valid.
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same as for B-spline curves.

• Drawback: Not continuous.
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Verified Error Bounds for Sparse Systems

Siegfried M. Rump
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rump@tuhh.de

The solution of sparse systems is ubiquitous in numerical computations. Despite
several efforts, there were no satisfactory method for computing verified bounds for
the solution and it was mentioned as “Grand Challenge”.

In this talk we present two algorithms to compute entrywise error bounds for
the solution of general real or complex sparse systems with condition number up to
the limit 1016. Our algorithms split into three subalgorithms for symmetric positive
definite, symmetric indefinite and general input matrix A. A key point is a factor-
ization of A into L1L2 such that L1 and L2 have identical sets of singular values
with the smallest one close to σmin(A)

1/2. A mathematically correct lower bound on
σmin(L1) = σmin(L2) is then computed using LT

1L1. Based on that a second method
exploring the inertia of a symmetric/Hermitian matrix is presented. It is often slower
but more stable, i.e., it may produce verified inclusions where the first method fails.

We show how to compute inclusions with almost maximal accuracy for all entries,
i.e., all bounds differ by few bits. That is based on a fast method to compute accurate
approximations and bounds for extremely ill-conditioned dot products with a very
efficient Matlab implementation.

Both approaches are used to compute verified error bounds for the solution of
least squares problems and for underdetermined linear systems. Inclusions of the
solution of general real or complex systems of nonlinear equations with sparse Jacobi
matrix are computed by transforming the problem into a linear system with point
matrix and interval right hand side.

All algorithms are implemented in pure Matlab/Octave and included in Version
14 of INTLAB, the Matlab/Octave toolbox for verified computations.
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Ensuring the safety of Neural Network Controlled Systems (NNCS) remains a ma-
jor challenge due to the opaque nature of neural networks, especially when temporal
properties are involved. This paper presents an interval analysis-based framework
for verifying both state and temporal properties of NNCS using Signal Temporal
Logic (STL) specifications [1, 2, 3, 4]. We introduce an STL monitoring algorithm
based on interval analysis, featuring adaptive time sampling and formal guarantees
of satisfaction over continuous domains. The STL formalism allows a rich temporal
property specification while our approach is broadly applicable to neural networks
when activation functions can be expressed as Ordinary or Differential Algebraic
Equations (ODEs/DAEs). Reachability analysis, following the differential approach
of [5], employs an ODE solver with affine arithmetic to ensure tight enclosures and
dependency tracking. We demonstrate the effectiveness of the method on two case
studies, involving both NNCS and systems with temporal constraints.

To express temporal properties, we adopt a temporal logic formalism known as
Signal Temporal Logic (STL) [1, 2]. It has been applied in the domains of robotics
and control. STL formulas allow the expression of various temporal properties using
explicit time bounds, combining logical connectives with bounded Until temporal
operators (U[a,b]) [1]. The syntax of STL is defined recursively as follows:

ϕ := µ | T | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U[a,b] ϕ2. (1)

We extend the verification of predicate (µ) with an inclusion predicate (X µ) to
verify properties on reachable tubes y(t, [y0]) ⊆ ([ỹ], t), ∀t ∈ [t0, T ], [3, 4]. A reachable
set at t is [ỹ](t).

([ỹ], t) ⊨ µi :=





1, if [ỹ](t) ⊂ X µ,

0, if [ỹ](t) ∩ X µ = ∅,
[0, 1], otherwise.

(2)

To evaluate satisfaction, we extend the STL syntax with the Boolean Interval Arith-
metic [6, 7], enabling sound reasoning under uncertainty.

To conduct reachability analysis of an NNCS, one effective approach is to exploit
the differential properties of its activation functions [5]. For instance, in the case of
the sigmoid activation function σ(x), it can be represented in the form of an ordinary
differential equation (ODE) as follows:

dσ

dx
(x) = σ(x)(1− σ(x)). (3)



SCAN 2025, Sept. 22-26, 2025, Oldenburg, Germany 11

This formulation enables the use of ODE solvers within an affine arithmetic framework
to compute guaranteed enclosures of the solutions while preserving the dependencies
between individual neurons in the network. Supporting a broad spectrum of neural
network architectures and expressive temporal logic specifications, the framework
enables formal verification of practical NNCS scenarios. Comparative analysis with
a Monte Carlo-based method highlights its precision and formal soundness.

Figure 1: The 20-second simulation il-
lustrates branching in the neural network
output, with reachable tubes depicted in
red. The axes indicate the position of the
NN-controlled robot in meters. Branching
arises from uncertainty in output classifi-
cation. Left deviations around obstacles
result in longer trajectories to the goal.
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Formal Verification of State and Temporal Properties

of Neural Network-Controlled Systems

AntoineBesset, Joris Tillet, and JulienAlexandredit Sandretto

Summary : Ensuring the safety of Neural Network Controlled Systems (NNCS) remains a major challenge due to the opacity of neural networks, especially when
temporal properties are involved. By combining interval analysis with reachability techniques, we ensure compliance with spatial and temporal specifications
formally expressed using Signal Temporal Logic (STL). The proposed framework provides a rigorous method for guaranteeing the correctness of uncertain dynamical
systems controlled by a neural network.

Cyber-physical systems

Consider a continuous dynamical system modeled by the following differential
equation:

ẏ(t) = ƒ (y(t),(t)), y(t) ∈ Rn, (t) ∈W, (1)

where y(t) is the state of the system, (t) is a bounded external input, and
W ⊆ Rp is a compact set. For any initial state y0 ∈ Rn and any measurable input
 : R+ →W , the system admits a unique trajectory denoted by ξ(·, y0,).
In the presence of bounded uncertainty, the objective is to determine the set
of possible trajectories over the interval [t0, T]. The set of reachable states
at time t ∈ R+ from an initial set Y0 ⊆ Rn is defined as:

Reacht(Y0,W) = {ξ(t, y0,) | y0 ∈ Y0, (s) ∈W, ∀s ∈ [0, t]} . (2)

A continuous-time representation on [tj, tj+1],
⋃N−1

j=0
[tj, tj+1] = [t0, T],

called a tube and denoted [ ỹ](t) for t ∈ [t0, T], is essential for preserving
the set of all possible system behaviors [6]. This tube enables the analysis of
the satisfaction of a temporal logic formula.

Combining STL and reachability analysis

To formally analyze the system behavior, we use interval analysis [5] and intro-
duce a set - valued extension of predicates:

([ ỹ], t) � μ :=





1, if [ ỹ](t) ⊂ X μ,
0, if [ ỹ](t) ∩X μ = ∅,
[0,1], otherwise.

(3)

Propagation in temporal logic is handled using Boolean intervals [2,7], e.g [3].:

0∧ [0,1] = 0, 0∨ [0,1] = [0,1], 1∧ [0,1] = [0,1], 1∨ [0,1] = 1.

Signal temporal logic

We use the formalism of Signal Temporal Logic (STL) [4]:

φ := > | μ | ¬φ | φ1∧ φ2 | φ1 U[t1,t2]φ2

where the temporal operator U (Until) specifies that a property must hold until
another becomes true within a given time interval. The operator F (Finally)
expresses that a goal must be reached within a time window, while G (Globally)
states that a property must hold throughout a time interval.

Example: an automaton executing a periodic task.

φ = G[0,5](⇒ F[3.5,4.5]) ∧ G[0,8](¬p) ∧ F[8,9]q

•G[0,5](⇒ F[3.5,4.5]): Always on [0,5]s, if  is reached thenmust follow
within 3.5–4.5s.

•G[0,8](¬p): The obstacle pmust never be encountered during the first 8s.

•F[8,9]q: The stand-by zone qmust be reached between 8s and 9s.

Tube ([ ỹ], t) in blue and zones (X μ) in red.

Application : A robot controlled by a neural network

A robot is controlled by a neural network,
whose internal behavior is difficult to inter-
pret. The presented methods provide formal
guarantees that it reaches its goal, avoids
obstacles, and does so within a given time
bound, even in the presence of uncertain-
ties [1]. The system employs a neural network
to choose, from a set of motion primitives,
the action that drives it toward the goal while
avoiding obstacles. An example of specifica-
tion could be:

φ = ¬C U[t1,t2] T.

This means that no collision (¬C) must occur
until the target (T) is reached, within the given
time horizon [t1, t2].

The reachable tube by the robot is shown in red, obstacles
are in green and yellow, the target point is in purple.

Set propagation in neural network

To conduct reachability analysis of NNCS, activation
functions such as the sigmoid can be expressed as
ODEs, e.g.

dσ

d
() = σ()(1 − σ()).

This allows ODE solvers to be combined with affine
arithmetic, where uncertain quantities are repre-
sented as

 = 0 + 1ϵ1 + · · · + nϵn, ϵ ∈ [−1,1].
Using shared noise symbols preserves dependencies
between neurons, enabling accurate error track-
ing and avoiding the overestimation of interval arith-
metic.
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Introduction

One of the key challenges for safety-critical cyber-physical systems (CPSes) such as
(highly) autonomous vehicles is decision making under the inevitable presence of un-
certainties in environmental perception. Wrong control decisions within such systems
may incur a substantial risk to life, health, or property. Achieving high confidence for
guard conditions enabling safety-critical actions is thus crucial, even if they rely on
uncertain percepts. However, the safety targets for, e.g., safety-critical manoeuvres
of vehicles are typically orders of magnitude higher than, e.g., the statistical figures
for the reliability of at least current learning-enabled object classification algorithms.

The perception and decision chain consequently needs to incorporate mechanisms
for substantially improving the confidence in critical guard conditions, i.e., to reduce
the risk of erroneously performing an unsafe manoeuvre to a frequency considerably
below the risk of individual misperceptions, e.g., misclassifications. These mecha-
nisms should, however, not impede performance, i.e., they should retain liveness of
the system in that they reduce the rate of erroneously admitting a safety-critical
action drastically, yet do not significantly reduce the overall likelihood of permitting
the respective action.

We present a symbolic-numeric method that systematically rewrites critical guard
conditions s.t. the resulting conditions are more resilient against misperceptions than
the original conditions in that they are compatible with a given safety target, e.g. a
societally accepted upper bound of the risk of erratically activating a safety-critical
manoeuvre due to a false positive in a guard evaluation, while liveness in terms of
the true positive rate of guard evaluation simultaneously is maximised.

Approach

1 2

3

Figure 1: A traffic situation.

Figure 1 illustrates a traffic situation in
which the blue ego car (no. 1) shall over-
take the orange car (no. 2) iff, first, the
orange car is detected as an obstacle and,
second, an overtaking manoeuvre is safe,
i.e., iff there is no oncoming traffic (such
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as the red car no. 3) with which car 1 could collide. In this –for the sake of conciseness
over-simplified– example, the physical environment is partitioned into grid elements
and the overtaking manoeuvre could be guarded by a complex Boolean condition de-
scribing conditions on the occupancy of the grid elements, which in turn is evaluated
separately by a suitable but inherently uncertain object detection and classification
algorithm, usually of machine-learning type.

Such safe-guarding conditions are prone to induce unnecessary risk by demanding
potentially unsafe overtaking manoeuvres as soon as a single grid element is (mis-)
perceived.

Incorporating environmental invariants can alleviate the problems described above:
A car can usually neither occupy a single grid element only nor be distributed over
non-adjacent grid elements. Our method exploits (formalisations of) such invariants.
Given an invariant, we systematically rewrite a given guard by treating percepts
not satisfying the invariant as don’t cares and generally remapping percepts s.t. the
robustness of the guard condition against misperceptions increases. Robustness in-
creases in that the rate of erratically evaluating the guard to be satisfied, i.e., its
false-positive rate, is reduced to below a pre-defined threshold, while the true posi-
tive rate gets maximised in order to guarantee performance.

We implemented and evaluated our approach by an algorithm that is based on
reduced ordered binary decision diagrams (RoBDD) and akin to RoBDD don’t care
optimisation. The algorithm is symbolic-numeric in that it attaches probabilities
to the elements of an RoBDD and adjusts those numerically during the RoBDD
operations underlying its don’t care optimisation.

Acknowledgement

This work was partially supported by the German Research Foundation (DFG) as
part of PreCePT (FR 2715/6-1).

References

[1] M. Fränzle and A. Hein. Safer Than Perception: Increasing Resilience of Auto-
mated Vehicles Against Misperception. Bridging the Gap Between AI and Reality
(AISoLA 2023), LNCS 14129, 415–433, 2024.

[2] Anna Nienaber. Increasing Resilience of Automated Vehicles Against Mispercep-
tion. Bachelor’s thesis, Carl von Ossietzky Universität Oldenburg, 2025. Unpub-
lished.



SCAN 2025, Sept. 22-26, 2025, Oldenburg, Germany 15

Computer-assisted proof of the simplicity of the
second Dirichlet eigenvalue for non-equilateral

triangles

Ryoki Endo1, Xuefeng Liu2

1 Graduate School of Science and Technology, Niigata University
8050 Ikarashi 2-no-cho, Nishi-ku, Niigata City, Niigata 950-2181, Japan

endo@m.sc.niigata-u.ac.jp
2 Department of Information and Sciences, Tokyo Woman’s Christian University

2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan

xfliu@cis.twcu.ac.jp

Keywords: Simplicity of eigenvalues, Dirichlet eigenvalue, Verified computation,
Computer-assisted proof

The rich relationship between Laplacian eigenvalues and shapes gave birth to
the field of spectral geometry, which continues to attract researchers from various
disciplines. In this talk, we provide a computer-assisted proof for a conjecture about
Dirichlet eigenvalues posed by R. Laugesen and B. Siudeja in Henrot’s book “Shape
Optimization and Spectral Theory” [1]:

Conjecture 1 (Conjecture 6.47 of [1]). The second Dirichlet eigenvalue is simple on
every non-equilateral triangle.

The proof of this conjecture is given by two parts.
In Part 1, we provided a partial result confirming the conjecture for the case of

nearly degenerate triangles [2]:

Theorem 1. The second Dirichlet eigenvalue is simple for every non-equilateral tri-
angle with its minimum normalized height 1 less than or equal to tan(π/60)/2.

To achieve this, we derived explicit estimates for the k-th Dirichlet eigenvalues on
the collapsing triangle:

For s ∈ (−1, 1) and t > 0, let T (s, t) be the triangular domain with vertices
(−1, 0), (1, 0) and (s, t); see Figure 1.

(s, t)

−1 1

T (s, t)

x

Figure 1: Shape of triangle T (s, t)

1The minimum normalized height of a triangle is the height measured relative to its longest side,
with the triangle scaled such that the longest side has unit length.
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Letting t0 = tan(π/60)/2,

µ̄k(s)

1 + t
2
3
0 /(3π

2)µ̄k(s)
≤ t

4
3

(
λk(s, t)−

π2

t2

)
≤ µ̂t0

k (s) (∀t ∈ (0, t0], k = 1, 2, · · · ), (1)

where µ̂t0
k (s) is the k-th eigenvalue of a Schrödinger operator over a bounded interval,

and µ̄k(s) is the k-th eigenvalue a Schrödinger operator on R. It is worth pointing out
that the values or bounds of the involved eigenvalues are all computable by utilizing
the recently developed methods for rigorous eigenvalue estimation [4].

The estimation for eigenvalues in (1) allows us to separate λ2(s, t) and λ3(s, t) for
t ∈ (0, t0], confirming the simplicity of the second eigenvalue for nearly degenerate
triangles.

Part 2 completes the proof by covering the case of non-degenerate triangles [3]:

Theorem 2. The second Dirichlet eigenvalue is simple for every non-equilateral tri-
angle with its minimum normalized height greater than or equal to tan(π/60)/2.

The methodology developed for this part provides a new way to stably compute
eigenfunctions for clustered eigenvalues [5].
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In this talk, we present an overview of Verry [1], a verified computation library
written in Python 3. Verry aims to provide a comprehensive implementation of
various rigorous numerical algorithms for ODEs (e.g., [2], [3], [5], and [6]) and DDEs.
We have released solvers based on [2] and [3] at this time.

Since they solve the same problem, these algorithms have many common parts.
We removed duplicate code by separating the algorithms into several routines. This
separation also enables us to combine each routine depending on the problem.

Here is an overview of the separation. Assume that a symbol put brackets around,
like [x], always denotes an interval. Consider the initial value problem

{
dy/dt = f(t, y) if t ∈ (t0, tbound),

y ∈ [y0] if t = t0,

where [y0] ⊆ RN is a non-empty bounded interval, and f(t, y) is a smooth function.
A number of rigorous numerical algorithms for ODEs calculate the enclosure of the
solution y = Φ(t, t0, y0) by the following iteration:

0. Initialize k = 0.

1. Set a coarse enclosure [pck(h)] and verify that Φ(tk + h, tk, yk) ∈ [pck(h)] holds
for all h ∈ [0, tk+1 − tk] and yk ∈ [yk], where tk+1 is predefined or adaptively
determined. Then refine [pck(h)] into the tight enclosure [pk(h)].

2. Calcurate [yk+1] such that Φ(tk+1, t0, y0) ∈ [yk+1] holds for all y0 ∈ [y0].

3. Increment k; then go to step 1 unless tk has reached tbound.

Note that one may obtain [yk+1] by evaluating an expression [pk(tk+1−tk)] directly;
however, due to the wrapping effect [4], it induces an explosion of diam[yk].

We implemented separately steps 1 and 2 as abstract classes and showed the
conditions that these subclasses must satisfy to cooperate with ODE solvers. For
example, step 2 is implemented as an abstract class Tracker. The requirements that
any x being an instance of Tracker must satisfy are as follows:

1. x corresponds to some pair (c, S), where S ⊆ RN is star-shaped at c.
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2. x.sample() returns c, and x.hull() returns an interval vector containing S.

3. Given [A] ⊆ RN×N and [b] ⊆ RN , x.update(A, b) updates (c, S) to (c′, S ′)
such that A(y − c) + b ∈ S ′ holds for all y ∈ S, A ∈ [A], and b ∈ [b]. Note that
F (S) ⊆ S ′ holds if F ∈ C1(S̄,RN), F (c) ∈ [b], and {DF (y) | y ∈ S} ⊆ [A].

These properties enable Tracker to track the trajectory of a given discrete dy-
namical system yn+1 = Fn(yn) (n = 0, 1, 2, . . . ). Hence, we can compute step 2 by
applying Tracker to the system yn+1 = Φ(tn+1, tn, yn).

Verry can also solve boundary value problems via the shooting method, and de-
lay differential equations via the method of steps. We will show some numerical
experiments.
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Introduction

A lot of recurring tasks encountered in robotics such as localization or robust control
involve solving a set of equations and inequalities or find the optimal solution to
a particular cost function. Interval analysis [1, 2] is an efficient numerical method
to compute a guaranteed approximation of the solution set for such problems even
in nonlinear cases (which is the norm in real-world applications). More precisely,
elementary interval contractors can be used in combination with algorithms such as
HC4-revise [4] to build more complex contractors and compute an inner and outer
approximation of a solution set S for a particular constraint satisfaction problem.

The robotics community traditionally relies on a set of software libraries which im-
plement the IEEE-1788 standard to various extents and provide the most-commonly
used interval operators and contractors. The latter are then used as building blocks
for more complex and specific problems. This paper advocates in favor of a novel ap-
proach which tackles interval arithmetic and contractor algebra directly at hardware
level. The advantages of this strategy have been detailed in [5] and notably include
the ability to implement efficient primitives where the trade-off between speed and
precision can be adjusted to satisfy the need of embedded robotics without sacrificing
the guarantees offered by interval analysis. The proposed acceleration is implemented
as a RISC-V custom ISA extension called xinterval which provides hardware instruc-
tions for recurring elementary contractors and expose them in C language.

General Approach

In [3], we designed a RISC-V custom extension called xinterval which adds native
support for IEEE-1788 interval arithmetic. The new hardware instructions corre-
spond to the most commonly-used interval arithmetic operators and transcendental
functions which can then be used to build portable elementary interval contractors.
The integration in the RISC-V architecture is achieved by using the double precision
floating-points registers to fit the interval model depicted in Figure 1. The imple-
mentation has been performed in VHDL and partially relies on the FloPoCo library
for IEEE-754 algorithms.
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Figure 1: Interval representation in xinterval

In [6] we presented an iterative process to validate the xinterval architecture and
measure the performance obtained on a FPGA device. This allows us to execute high-
level robotics applications such as localization algorithms and compute fine-grained
runtime metrics.

In the proposed paper, we compare the performances obtained on two textbook
robotics localization algorithms (navigation in a field of landmarks and simple SLAM)
for a traditional non-accelerated and a xinterval-based implementation. Our first
results indicate speedup ranging from 3 to 10 depending of the complexity of the
considered contractors.

Conclusion

This work proves the viability of interval arithmetic in hardware by providing a
custom RISC-V extension prototype and a validation platform to execute standard
robotic localization algorithms. The upcoming works involve refinement of our inter-
val primitives to increase the potential speedups.
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Introduction

Interval arithmetic [4] is essential in many scientific and engineering fields, but its
adoption is often hindered by computational complexity. Specialized software tools
are commonly used to address this challenge.

Modern frameworks for deep learning offer efficient graph execution and support
for multiple hardware backends. This raises the question of whether such infras-
tructure can also accelerate other classes of numerical computations, such as interval
arithmetic, without developing specialized tools.

We would like to demonstrate that, with targeted modifications, the widely used
deep learning framework TensorFlow [1] can serve as a fast and reliable platform for
interval computations.

Our approach leverages TensorFlow’s powerful infrastructure that can provide
parallelization, optimization, and hardware acceleration. The work lays the foun-
dation for further developments, including the application of TensorFlow to solving
interval constraint satisfaction problems (CSPs) [2], which is one of our intended
targets.

Background

A variety of frameworks enable reliable interval arithmetic (e.g., INTLAB, MPFI,
C-XSC, IntervalArithmetic.jl), while advanced solvers such as IBEX [5] and CODAC
offer comprehensive support for interval CSPs, contractor programming, and are
widely used in engineering and validated numerics.

TensorFlow supports execution on CPUs, GPUs, and TPUs via device-specific
kernels, the full graph-level optimization is achieved through the XLA compiler [6].
XLA fuses operations, applies advanced optimizations. The adoption of StableHLO,
a hardware-independent IR, enables standardized model export and greater interop-
erability with compilers such as XLA and IREE, enhancing portability in machine
learning workflows.

This raises the important question whether applications in other domains (such as
CSP) require specialized implementations for each backend, or if a generic, IR-based
approach can deliver sufficient efficiency across diverse hardware platforms.
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Main results

We implemented and benchmarked three approaches for interval arithmetic in Ten-
sorFlow: (i) a native functional variant using tensor operations, (ii) an object-oriented
approach (with ExtensionType), and (iii) custom C++ kernels via TensorFlow’s plu-
gin interface. All implementations leverage TensorFlow’s graph execution for opti-
mized performance, with all experiments performed on CPU.

Benchmarking on large expression trees demonstrated that the native approach,
thanks to the XLA optimizer, consistently yields the fastest execution times, espe-
cially as the number of operations increases. The custom kernel approach is also
efficient, benefiting from direct C++ execution, while the object-oriented variant
incurs significant overhead from object construction and method dispatch.

For large expression graphs (tested up to 50,000 operations), the native Tensor-
Flow implementation consistently achieved the fastest execution among the evaluated
variants while maintaining IEEE-1788 [3] compliance. When compared to IBEX, a
state-of-the-art interval solver, TensorFlow’s graph-based execution outperforms the
traditional “eager” evaluation in IBEX by two to three orders of magnitude for large
graphs, and approaches the efficiency of IBEX’s highly optimized compiled (“lazy”)
mode. These results demonstrate that modern machine learning frameworks can
deliver scalable and competitive performance for interval arithmetic, provided they
leverage graph compilation and optimization.

These results confirm that efficient, scalable interval computations can be achieved
in TensorFlow with minimal modifications by leveraging graph compilation and op-
timization. This suggests that a generic IR-based approach can deliver sufficient
performance without backend-specific implementations, opening new possibilities for
advanced numerical methods in machine learning and scientific computing workflows.
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Motivation / Introduction

Interval arithmetic [4] is a key tool for handling uncer-

tainty and ensuring reliable results in optimization, con-

trol, and validated numerics. Despite its importance,

practical adoption is often hindered by high computa-

tional cost and the lack of efficient, parallel or hardware-

accelerated implementations.

Existing frameworks (INTLAB, MPFI, C-XSC, IntervalAr-

ithmetic.jl) and solvers (IBEX [5], CODAC) offer solid

functionality, but are mostly CPU-bound and would re-

quire dedicated GPU/TPU backends for scalable perfor-

mance.

Meanwhile, modern ML frameworks like TensorFlow [1]

provide graph execution, advanced compiler optimiza-

tions (XLA [6], IREE), and automatic acceleration on

CPUs, GPUs, and TPUs. These capabilities can be lever-

aged to evaluate expression trees in interval arithmetic,

which is a key step towards building efficient interval CSP

solvers [2].

Question: Can TensorFlow, a mainstream ML frame-

work, become an efficient platform for interval compu-

tations?

Our goal: Demonstrate scalable, efficient interval arith-

metic in TensorFlow, with compatibility to IEEE-1788 [3],

laying the foundation for future interval CSP solvers.

Approach

We explored three possible implementations of interval

arithmetic in TensorFlow, all executed in graph mode

with compiler optimizations (XLA/IREE):

Native (functional): direct composition of interval

operations from basic tensor ops; benefits most from

XLA/IREE graph fusion, which also enables efficient

outward rounding (IEEE-1788) with minimal

performance overhead.

Composite (object-oriented): based on

tf.experimental.ExtensionType; simple API, but

high Python overhead.

Custom kernels (C++ ops): implemented via

TensorFlow plugin API; efficient runtime, but higher

development cost, compiled side-by-side with

standard TF operations.

All implementations rely on graph execution, enabling

optimization, parallelism, and hardware acceleration

(CPU, GPU, TPU).

Results

We benchmarked expression trees up to 50,000 opera-

tions (CPU run, Intel Core i7-12700H, 64GB RAM).

TF variants: Native is consistently fastest (thanks to XLA

fusion). Custom kernels are close in performance, but re-

quire more development effort. Composite suffers from

Python overhead and does not scale as well.

Expression tree evaluation – TF variants

Operations TF native TF composite TF custom

10 85.2 (2.0) 191.6 (8.8) 79.9 (4.4)

100 88.5 (5.3) 198.8 (10.9) 78.5 (3.8)

1000 86.1 (5.6) 226.4 (8.9) 84.4 (5.1)

5000 90.1 (5.1) 441.7 (36.9) 98.5 (5.1)

10000 91.1 (4.9) 955.9 (6.0) 114.3 (21.9)

25000 85.0 (2.3) 1094.2 (17.4) 96.9 (10.4)

50000 94.0 (3.6) 728.9 (34.7) 96.4 (2.0)

Mean execution times (µs) and standard deviations.

Performance remains stable even for large expres-

sion trees (50k ops), demonstrating scalability of the

TensorFlow-based approaches.

Results (cont.)

The plot shows the increasing Python overhead for the

composite type, while native stays flat and custom re-

mains close.

Expression tree evaluation – TF variants
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TF vs IBEX:We compared TF native against IBEX in ea-

ger and lazy modes to evaluate competitiveness with an

established interval solver. IBEX in eager mode is among

the fastest eager interval arithmetic frameworks, while

IBEX in lazy (graph) mode is widely regarded as the state-

of-the-art solver in terms of performance.

Expression tree evaluation – TF vs. IBEX

Operations TF native IBEX eager IBEX lazy

10 85.2 (2.0) 15.1 (1.7) 4.1 (0.2)

100 88.5 (5.3) 112.6 (3.6) 3.9 (0.2)

1000 86.1 (5.6) 1113.9 (15.7) 4.5 (0.0)

5000 90.1 (5.1) 5533.8 (46.9) 5.1 (0.2)

10000 91.1 (4.9) 13033.6 (375.8) 4.8 (0.1)

25000 85.0 (2.3) 33789.4 (1939.1) 4.9 (0.7)

50000 94.0 (3.6) 74208.8 (893.7) 4.3 (0.1)

Mean execution times (µs) and standard deviations for TF

native, IBEX eager, and IBEX lazy.

The plot shows IBEX eager slowing linearlywith the num-

ber of operations, contrastedwith the near-constant per-

formance of TF native and IBEX lazy.

Expression tree evaluation – TF vs. IBEX
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TF native outperforms IBEX eager by 2–3 orders of mag-

nitude, and approaches IBEX lazy performance for large

graphs, showing similar scalability without slowdown on

larger instances. This demonstrates that ML frameworks

can rival even the most efficient traditional solvers.

Key Insights / Discussion

Graph execution matters: TF graph mode with

XLA/IREE gives 2–3 orders of magnitude speedup

over eager-style execution.

Native wins: Functional TF native is fastest (despite

the overhead of outward rounding); custom C++ ops

are competitive, while composite suffers from Python

overhead.

Scalability: TF native scales comparably to IBEX lazy,

remaining efficient even for large expression trees

(50k+ ops).

Portability: ML frameworks provide parallelism and

CPU/GPU/TPU backends, unlike most traditional

interval solvers.

Future integration: StableHLO IR + XLA/IREE

suggests portable pipelines for interval arithmetic

solving and other use-cases (e.g., CSP).

Future Directions

Extend from interval arithmetic to interval CSP

solving (consistency, branching, backtracking).

Integrate automatic differentiation for constraint

propagation (potentially leveraging TensorFlow’s

built-in autodiff).

Exploit GPU/TPU acceleration and distributed

execution for larger problems.

Build on StableHLO IR for portable pipelines across

frameworks.

Apply to domains such as control, optimization, and

formal verification.

Conclusions

TensorFlow graph execution enables efficient,

IEEE-1788 compliant interval arithmetic.

Native implementation is fastest; custom kernels

are competitive; composite design suffers from

Python overhead.

TF native outperforms IBEX eager (the fastest

among eager frameworks) by 2–3 orders of

magnitude and scales comparably to IBEX lazy, the

state-of-the-art graph-based approach.

ML frameworks can provide a scalable foundation

for interval arithmetic and validated numerics.

This opens a path to parallel, portable, high-

performance interval computation and possibly inter-

val CSP solvers on ML infrastructures.
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Introduction

Control and state estimation procedures need to be robust against imprecisely known
parameters, uncertainty in initial conditions, and external disturbances. Interval
methods and other set-based techniques form the basis for the implementation of
powerful approaches that can be used to identify parameters of dynamic system mod-
els in the presence of the aforementioned uncertainties. Moreover, they are applicable
to a verified feasibility and stability analysis of controllers and state estimators [1,3,7].

In addition to offline approaches for analysis, interval and set-based methods have
also been developed in recent years which are allow to solve the associated design
tasks and to implement reliable techniques that are applicable online. The latter
approaches include online parameter adaptation techniques for nonlinear variable-
structure controllers, interval observers, and fault diagnosis techniques [3,4,5,7]. In
this talk, an overview of the methodological background will be presented, together
with a review of practical applications for which interval and set-valued approaches
have been employed successfully.

Modeling, Parameter Identification, and Verified State Esti-
mation

Although, for example, many dynamic system models in (control) engineering, espe-
cially in the frame of thermo-fluidic applications, are described after a first-principle
modeling by state equations that have certain monotonicity properties, other appli-
cations in the domain of mechanics as well as for electro-chemical energy storage may
require specific changes of coordinates to obtain these properties. In the domains of
parameter identification as well as state and disturbance estimation, the most im-
portant monotonicity property that allows for a simplification of the aforementioned
tasks is the cooperativity of the state equations. As far as the application domains
mentioned above are concerned, these properties originate from the conservation of
mass or energy [4].

In such cases, a decoupling of lower and upper bounding systems — that en-
close all possible state trajectories — can be obtained. This property does not only
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allow for the simplification of the task of parameter identification but also for the
implementation of real-time capable state estimation procedures.

For systems with periodically recurring trajectories (and also disturbance pro-
files), recent investigations have shown that the corresponding procedures can also
be extended to a learning-type technique. This technique especially allows for en-
hancing the bounds of estimated state trajectories in each successive execution of
the same task and exploits a formulation that uses the iteration counter as a second
independent dimension in addition to time [2].

Verified Control Implementation and Robust Model-Predictive
Control

On the basis of the set-based state estimates described in the previous section, real-
time capable robust control implementations can be derived that prevent the violation
of state constraints with certainty. Moreover, it is possible to implement robust
predictive control laws in a similar manner. For the case of a nonlinear state feedback,
interval extensions of sliding mode and backstepping control approaches have been
published which allow for a guaranteed stabilization of the system dynamics and for a
guaranteed prevention of overshooting certain thresholds for the state variables under
constraints on the inputs and their respective variation rates. A practical application
of this technique is the temperature control of a solid oxide fuel cell stack [3,7].

For the second class of controllers, a novel combination of set-based and neural
network modeling was recently developed and integrated into a sensitivity-based pre-
dictive control scheme that maximizes the degree of fuel utilization of a fuel cell. The
approach can be implemented for time-varying desired electric power profiles so that
operating points stay within the region of Ohmic polarization, which is crucial for
preventing accelerated aging of the fuel cell stack [5].

Combination of Set-Based and Stochastic Uncertainty Repre-
sentations

In the final part of this talk, a combination of stochastic and set-based (in this case,
ellipsoidal) uncertainty representations will be considered. This approach allows, on
the one hand, for a rigorous quantification of predefined confidence levels in stochastic
state estimation procedures. On the other hand, it allows for handling nonlinearities
in such a way that the previously mentioned tolerance bounds are definitely not
determined in an overly optimistic manner [6].
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Introduction

We consider the weak solution u ∈ H1
0 (Ω) of the following boundary value problem

{
−∆u = f in Ω,

u = 0 on ∂Ω,
(1)

where Ω ⊂ RN (N > 1) is a bounded polytopic domain, and f is a given function that
satisfies f ∈ L1(Ω) for N = 1 and f ∈ Lp(Ω) for some p > N/2 when N ≥ 2. The
motivation of this research is to find upper and lower solutions that enclose the exact
solution of this problem. However, with traditional definitions of upper and lower
solutions, smoothness of functions is implicitly required, which made it impossible
to represent upper and lower solutions using piecewise linear functions. To overcome
this challenge, it is necessary to relax the conditions that upper and lower solutions
must satisfy.

Green-Representable Solutions

We introduce a new framework based on fundamental solutions. For an evaluation
point sint ∈ Ω, we construct test functions of the form

ϕsint(x) := aintΓ(sint, x) +Hsint(x), (2)

where Γ is the fundamental solution satisfying −∆Γ(s, x) = δ(x − s), with explicit
forms depending on dimension. aint is a non-zero coefficient, and Hsint is harmonic in
some domain containing Ω.

Definition 1 (Local Green-representability). A solution u ∈ H1
0 (Ω) of the prob-

lem (1) is said to be Green-representable with respect to ϕsint (or simply ϕsint-Green-
representable for short) if, for a fixed sint, there exists a test function ϕsint of the form
above such that

aintu(sint) = ⟨f, ϕsint⟩+
∫

∂Ω

∂u

∂n
ϕsintdγ. (3)
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Definition 2 (Global Green-representability). A solution u of the problem (1) is
said to be Green-representable with respect to mapping Φ : sint 7→ ϕsint (or simply
Φ-Green-representable for short) if u possesses the regularity u ∈ H1

0 (Ω) ∩W 1,q(Ω)
for some q > N , and there exists a mapping Φ that assigns to each point sint ∈ Ω a
test function ϕsint such that u is ϕsint-Green-representable.

The following is our main theorem and its corollary for two-dimensional polygonal
domains.

Theorem 1 (Main Theorem). Let Ω ⊂ RN (N > 1) be a bounded N-dimensional
polytopic domain and let f ∈ Lp(Ω) with p > N/2. Then, a solution u ∈ H1

0 (Ω)
of the problem (1) is locally Green-representable with respect to any fixed evaluation
point in Ω.

Corollary 1. Let Ω ⊂ R2 be a bounded polygonal domain (possibly non-convex) and
let f ∈ Lp(Ω) with p > 1. Then a solution u ∈ H1

0 (Ω) of the problem (1) is globally
Green-representable with respect to any mapping Φ constructed using fundamental
solutions.

Generalized Sub- and Super-Solutions

Building on this representability, we define generalized sub- and super-solutions:

Definition 3 (Green-representable super-solution). A function u ∈ W 1,q(Ω) (q > N)
is a Green-representable super-solution if there exists a nonnegative constant c and a
mapping Φ : sint 7→ ϕsint such that

⟨∇u,∇ϕsint⟩ ≥ ⟨f, ϕsint⟩+ c

∫

∂Ω

∂ϕsint

∂n
dγ (4)

and
u− c ≥ 0 on ∂Ω. (5)

A corresponding definition applies to sub-solutions by reversing the inequalities.
This generalization allows piecewise linear functions to serve as sub- and super-
solutions—a capability not available in the classical framework.

Theorem 2 (Comparison). Let u be a Green-representable solution with respect to

mapping Φ, and assume that for all sint, we have
∂ϕsint

∂n
≤ 0 on ∂Ω. Let u and u be a

Green-representable sub-solution and super-solution, respectively, with respect to the
same mapping Φ. Then,

u− γsint ≤ u ≤ u+ γsint in Ω, (6)

where γsint :=
1

aint

∫
∂Ω

∂u
∂n
ϕsintdγ.

In the talk, we will present numerical examples in one and two dimensions. In
particular, for two-dimensional cases, we demonstrate pointwise evaluations in non-
convex domains where the solution lacks sufficient regularity.
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sis, Hénon-type equation

We consider the Hénon-type equation, which is a two-point boundary value problem:

{
−u′′ = (|x|l + λ)up, x ∈ (−1, 1),
u(−1) = u(1) = 0,

(1)

where the parameters l and λ satisfy l ≥ 0 and λ ≥ 0, and the exponent p satisfies
p > 1. In this context, an “even solution” refers to a function u that is both a solution
of (1) and an even function, satisfying u(−x) = u(x) for all x ∈ (−1, 1).

The case λ = 0 corresponds to the one-dimensional Hénon equation −u′′ = |x|lup,
and problem (1) was introduced in [1] as part of a study on the symmetry of its
solutions. In recent years, the Hénon-type equation has attracted attention due to
the possibility of possessing more multiple solutions than the original Hénon equation,
and the bifurcation structure of such solutions has been the subject of active research.

According to the study [2], for fixed p > 1, the uniqueness of positive even solu-
tions holds on most of the first quadrant (l, λ) ⊂ R2, and only a very narrow region
remains as a candidate for the existence of multiple positive even solutions. How-
ever, while sufficient conditions for multiple solutions have been studied, the overall
bifurcation structure—including the precise branching points—has not been fully un-
derstood.

In this study, we rigorously determined the number of positive solutions of (1),
including both even and non-even ones. The all-solution search is a method for
rigorously identifying all solutions of a differential equation within a given parameter
range. However, a fundamental difficulty in implementing this method arises from the
fact that the set of parameters used to determine solutions (e.g., initial values) is non-
compact. For example, to find all solutions of problem (1), one would, in principle,
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need to explore the infinite range −∞ < u′(−1) < ∞, which is computationally
infeasible.

To overcome this difficulty, we first established a priori estimates of the solutions.
Proposition 1 gives an upper bound on the maximum value ∥u∥∞ of any positive
solution, while Propositions 2 and 3 provide explicit upper and lower bounds on the
initial condition u′(−1), thereby reducing the search domain to a compact set.

Based on these theoretical results, we constructed the initial value domain de-
pending on the type of solution. For even solutions, we fixed u′(0) = 0 and varied
u(0) within the bound given by Proposition 1. For general positive solutions (includ-
ing non-even ones), we fixed u(−1) = 0 and varied u′(−1) within the bounds specified
in Propositions 2 and 3. Here again, the upper bound from Proposition 1 plays a
key role in computation: if the value of the function exceeds this bound during the
numerical process, the trajectory can immediately be ruled out as a solution to (1),
saving unnecessary computations.

Using these settings, we carried out an efficient and exhaustive numerical search
with the kv library [3].

Here, B(x, y) :=
∫ 1

0
tx−1(1− t)y−1dt denotes the beta function.

Proposition 1. Let u be a positive solution of (1) with l ≥ 0, λ ≥ 0, and p > 1.
Then

∥u∥∞ ≤ 2

(
B(l + 1, p+ 2) +

λ

p+ 2

)− 1
p−1

.

Proposition 2. Let u be a positive solution of (1) with l ≥ 0, λ ≥ 0, and p > 1.
Then

u′(−1) ≥ 1

2

(
B(l + 1, 2) +

λ

2

)− 1
p−1

=
1

2

(
1

(l + 1)(l + 2)
+
λ

2

)− 1
p−1

.

Proposition 3. Let u be a positive solution of (1) with l ≥ 0, λ ≥ 0, and p > 1.
Then

u′(−1) ≤
√

2(1 + λ)

p+ 1
· 2 p+1

2

(
B(l + 1, p+ 2) +

λ

p+ 2

)− p+1
2(p−1)

.
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Introduction and contributions

Recent advances in computer-assisted proofs for dynamical systems have been driven
primarily by progress in the study of the global dynamics of infinite-dimensional
problems, such as the rigorous construction of invariant objects, forward integration
of time-dependent partial differential equations (PDEs), and the validation of con-
nections between equilibria. In particular, solving the initial value problem (IVP)
for PDEs has emerged as a central topic in this field. Over the past decades, sev-
eral standard methodologies for rigorously integrating IVPs have been established,
including the fully spectral approach [1], the autonomous semigroup approach [2], and
the non-autonomous semigroup approach [3].

In this talk, we present our recent advances in the non-autonomous semigroup
approach for semilinear parabolic PDEs, focusing on the validation of long-time exis-
tence of solutions and their asymptotic behavior. More precisely, we consider a class
of IVP of the general form

{
ut = (λ0 + λ1∆+ λ2∆

2)u+∆pN(u), t > 0, x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,

where p ∈ {0, 1}, N is a polynomial satisfying both N(0) = 0 and its Fréchet deriva-
tive DN(0) = 0, u0(x) is a given initial data. The parameters λ0, λ1, λ2 are chosen so
that the PDE is parabolic. The assumption of the PDE being semilinear implies that
the degree p of the Laplacian in front of the nonlinear term N is less than the one
of the differential linear operator λ0 + λ1∆+ λ2∆

2. This form of PDEs covers wide
variety of PDEs, such as the nonlinear heat, the Swift–Hohenberg, Cahn–Hilliard,
Ohta–Kawasaki, phase-field-crystal (PFC), and Navier–Stokes, etc.

Our approach reformulates the IVP as a zero-finding problem in a Banach space of
time-dependent Fourier coefficients. A Newton-like operator is explicitly constructed
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using the linearized evolution operator derived from semigroup theory. The inverse
of the Fréchet derivative is realized by the variation-of-constants formula, for which
we develop rigorous numerical bounds using a decomposition into finite and infinite
Fourier modes. A key feature of our approach is the explicit control of the evolution
operator, which allows us to validate contraction properties of the Newton-like oper-
ator and thus prove the existence and local uniqueness of solutions in a neighborhood
of numerical approximations.

Furthermore, we extend this approach to a multi-step framework, enabling rig-
orous forward integration over long time intervals. In other words, this develop-
ment relates to the challenge of efficiently controlling the wrapping effect in infinite-
dimensional problems, which is an essential problem in the field of interval analysis.
By using the semigroup property, we rigorously control the evolution operator over
multiple time intervals and thereby validate the contraction property of the Newton-
like operator over long time. This leads to more efficient rigorous integration of
IVPs. In the talk, we demonstrate the effectiveness of this improved approach using
the Swift–Hohenberg equation and the Ohta–Kawasaki equation, the latter of which
includes derivatives in the nonlinear term.

Finally, we discuss the parallelizability of the method, which makes it compu-
tationally efficient for high-dimensional systems. The non-autonomous semigroup-
based rigorous integrator thus provides a unified and feasible framework for studying
long-time dynamics of evolutionary PDEs through validated numerics.
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Formulation of the problem

A usual statistical approach to processing data x1, . . . , xn is to come up with a model
– e.g., based on the training part of the data – and then test whether this model
adequately describes the remaining testing part of the data.

For example, if it turns out that the observations are consistent with a normal
distribution with mean m and standard deviation σ, then we can use the chi-square
criterion and check whether we have

χ2
n,1−α ≤

n∑

i=1

(xi −m)2

σ2
≤ χ2

n,α

for appropriate values χ2
n,1−α and χ2

n,α.
These tests are designed in such a way that:

• when the actual distributions is the assumed one, this test returns “true” with
frequency close to 1, while

• when the actual distribution is different from the assumed one, for sufficiently
large n – above a certain threshold n0 – the corresponding test fails with fre-
quency close to 1.

This traditional statistical approach has worked successfully for more than a cen-
tury. However, with the emergence of big data, when we have millions and even
billions of data points, this traditional statistical approach often fails. The reason for
this failure is clear (see, e.g., [1, 2]): in most applications areas – e.g., in econometrics
– all statistical models are approximate. When n was reasonably small, much smaller
than the threshold value n0, the tests still worked. However, big data often means
n > n0, so the tests fail. As a result, either we cannot find a model that fits the
training data, or, if such a model is found, we cannot show that it fits the testing
data. This phenomenon is known as macronumerosity.

This is well-known problem in many application areas – e.g., in modeling climate
change.
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Intervals form a natural solution

That the model is approximate means that there are some close values x̃i ≈ xi that
fit this model. A typical statistical idea would be to find the distribution for the

approximation error ∆xi
def
= x̃i − xi, but in this case, we would still assume some

exact distribution for xi, so this brings us back to the same problem.
From the interval viewpoint, a natural solution out of this seemingly vicious circle

is not to assume any specific distribution for ∆xi, but instead to use interval uncer-
tainty, i.e., to assume that all the values ∆xi are within an interval [−∆,∆]. In this
case, for each model and each corresponding test C(x1, . . . , xn) ≤ C0 that is not sat-
isfied for the actual data, we can describe the degree to which data fits the model by
the smallest ∆ for which some ∆-close values x̃i satisfy the test. Usually, the values
∆xi are small, so we can ignore terms quadratic in ∆xi; in this linear approximation,
we have:

∆ =
|f(x1, . . . , xn)− C|

n∑
i=1

|C,i|
,

where C,i are partial derivatives of C with respect to xi.
Then, e.g., between two models with the same number of parameters, we can

select the model with the smallest ∆.
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Formulation of the problem

In many practical situations, we need to design a device for measuring several quan-
tities – e.g., a device to send on a space mission. Often, this is largely a mission to
the unknown – we do not know a priori which measurements will be more important.

In the ideal world, we should measure each of the quantities of interest with
maximum accuracy. However, in practice, there are limits on the size and weight of
the device, so our options are limited. Under such restrictions, we may have different
possible sets of accuracies a = (a1, . . . , an) for measuring the desired n quantities.

Which options should we select?

Let us formulate this problem in precise terms

To select the best option, we need to describe the relation “better of or the same
quality” – which we will denote by a ⪰ b. This relation should be reflexive (a ⪰ a)
and transitive (if a ⪰ b and b ⪰ c, then a ⪰ c). Of course, if all measurement are
more accurate, i.e., if ai ≤ bi for all i, then we should have a ⪰ b – and if also ai < bi
for some i, we should have b ̸⪰ a.

Since we do not know which quantity is more important, the relation should not
change if we swap some quantities. In precise terms, for each permutation π, if a ⪰ b,
then we should have π(a) ⪰ π(b). Finally, the selection should not depend on what
measuring unit we use for each quantity: e.g., for measuring length, we can use meters
or centimeters. If we switch to a unit which is λi times smaller, all numerical values are
multiplied by λi. Thus, for each tuple λ = (λ1, . . . , λn), if (a1, . . . , an) ⪰ (b1, . . . , bn),
then we should have (λ1 · a1, . . . , λn · an) ⪰ (λ1 · b1, . . . , λn · bn). This is known as
scale-invariance.
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Our result: formulation

It turns out that for permutation-invariant and scale-invariant relations, a ⪰ b is
equivalent to a1 · . . . · an ≤ b1 · . . . · bn.

Our result: meaning

This result has the following natural interpretation. If we start with some area of
values of size X = X1 × . . . × Xn, then we have X1/a1 possible different measured
values of x1, etc., with the total of N = (X1/a1) · . . . · (Xn/an) combinations. Here,
N = X/(a1 · . . . · an). So, the smaller the product of ai’s, the more alternatives we
get and thus, the more information we gain about the studied object.

Proof

For n = 2, for all a1 and a2, due to permutation-invariance, we have (
√
a1,
√
a2) ∼

(
√
a2,
√
a1), where a ∼ b means a ⪰ b and b ⪰ a. For λ1 =

√
a1 and λ2 =

√
a2,

scale-invariance implies that (a1, a2) ∼ (
√
a1 · a2,

√
a1 · a2). So, by transitivity, if the

two options have the same product a1 · a2, they are equivalent.
For n > 2, we can similarly prove that if we replace two values ai and ai+1 with

another two values with the same product, the options remain equivalent. Thus, if we

start with any option a = (a1, . . . , an) with s
def
= n
√
a1 · . . . · an, then we first replace

a1 and a2 with s and (a1 · s2)/s. Then, for each k, once we have an equivalent option
(s, . . . , s, a′k+1, a

′
k+2, . . . , a

′
n), we replace a

′
k+1 and a

′
k+2 with s and (a′k+1 · a′k+2)/s, etc.

At the end, we will be able to conclude that the original option a is equivalent to
(s, . . . , s). For such options, the smaller s, the better – and if s is smaller, then sn is
also smaller.

Thus, the relative quality of different options is indeed determined by the product
sn of their accuracies: the smaller this product, the better.
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Fairness in software is a dynamic, interdisciplinary field that is evolving rapidly
and has significant implications across many areas of modern life. It plays a critical
role in such varied domains as law (e.g., for assessing the risk of criminal re-offense),
finance (e.g., for evaluating creditworthiness), engineering (e.g., for autonomous ve-
hicle decision-making), medicine (e.g., predicting cancer risk), and even social media
(e.g., mitigating filter bubbles). Numerous definitions of this so-called algorithmic
fairness exist, and some of them are inherently contradictory, for example, when
ethical norms or standards of social responsibility come into conflict [3]. In contexts
involving non-polar predictions, that is, predictions where the goals of (groups of)
individuals and decision-makers are aligned, fairness can often be understood as the
absence of bias, the presence of which is easier to assess. This perspective is especially
relevant in medical applications.

Even in non-polar predictions, conflicting interpretations of fairness may arise, for
example, from considering the group versus individual perspective. Resolving these
conflicts requires a meta-level analysis that takes into account the broader social and
algorithmic context, prevailing notions of justice, and the utilities of both decision-
makers and decision recipients. In this contribution, we propose a meta-fairness
metric designed to aid in selecting or combining fairness definitions in a principled
and explainable manner. To support this, we advocate for the use of the Dempster-
Shafer theory (DST) [5] as a foundation for handling uncertainty and integrating
diverse fairness viewpoints.

We illustrate meta-fairness using the problem of classifying individuals at potential
risk of hereditary breast cancer syndrome we addressed in our recent publications.
Specifically, we focused on predicting the likelihood of mutations in BRCA1 and
BRCA2 genes using DST based on factors such as patient age, personal medical
history, and familial cancer history [1]. Our model accounts for epistemic uncertainty
by using intervals when the ages of individuals in the family history are not precisely
known, and it applies interval arithmetic with result verification [2] for all operations
related to DST.
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In medical contexts, a further important aspect is algorithmic explainability, that
is, the ability to make the model’s decisions and the underlying data transparent
and interpretable to end users. For example, physicians must understand how and
why a particular risk prediction was generated in order to provide accurate, informed
guidance on potentially life-altering decisions. Likewise, patients facing difficult treat-
ments need to understand the rationale behind the risk score provided. Explainability
thus transforms an algorithm from a black box into a trustworthy, human-centered
precision tool. For this case as well, DST-based approaches may yield better results
than traditional closed-source systems [4].

Accuracy and reliability in assigning patients to risk classes are, of course, also
critically important. However, there are situations where accuracy may need to be
balanced in favor of fairness. The concept of meta-fairness provides a framework for
navigating such trade-offs, enabling the selection of appropriate quality criteria based
on the specific context. This includes ethical considerations and the diverse utilities
of the stakeholders involved, ultimately tending towards outcomes that are not only
effective but also just and context-sensitive.

Beyond introducing the meta-fairness metric, this talk aims to explore the broader
role of (meta-)fairness in healthcare and risk prevention. We revisit our earlier DST-
based risk prediction models from this new perspective: Can these methods ensure
appropriate classification of patient groups and their individual members or fam-
ilies into risk categories, as defined by our meta-fairness criterion? Are DST ap-
proaches genuinely superior to alternatives like logistic regression, or do they require
generalization—such as incorporating interval-based probability bounds or alterna-
tive evidence combination rules—to fully align with the demands of clinical decision-
making?
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Abstract

In this invited talk I will give insights into my personal experience in bringing formal
methods from academia to real-world applications in industry. I will first elaborate
on the development of the constraint solver iSAT during my academic years at the
University of Oldenburg from 2005 to 2012. After that I will address the challenges
and use cases from real-world applications I was faced with when I moved to the
industrial test tool provider BTC Embedded Systems in 2012. One particular focus
of this talk will be on how powerful methods and tools from academia like iSAT have
been successfully transferred from their academic environment to industrial software
development projects.
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Introduction

Interval analysis is well suited for solving state estimation problems, which can be
useful to deal with uncertainty in dynamical systems [4, 5].

The remoteness constraint [6] constitutes a fundamental geometric relationship in
robotics, defining the distance measure between sensors with measurement directivity
and obstacles in the environment. This constraint is particularly critical for acoustic
sensors, where the directivity pattern can exhibit substantial angular coverage [1],
making precise characterization of sensor-obstacle spatial relationships essential for
reliable navigation and mapping applications.

We present an implementation of the separator [2] for the remoteness constraint.
The proposed separator enables the complete characterization of the set of compat-
ible sensor positions relative to obstacles, given distance measurements and sensor
directivity constraints. Unlike previous approaches that were limited to inclusion
testing [6], our implementation provides an efficient and modern way to characterize
the feasible sensor positions.

Main results

Figure 1 shows a paving of separators [3] on the remoteness constraint relative to
an obstacle segment shown in red, and the remoteness cone defined by vectors u1 =[
−0.5 −1

]
and u2 =

[
0.5 −1

]
. The pink area represent the set of positions for the

sensor compatible with the measured distance d, the blue areas represent the set of
positions not compatible with the measurement, and the yellow area is the unknown
area. Figure 1a shows the separator for the case d = [4, 5], and Figure 1b shows the
separator for the case d = [5,+∞].

This separator can be used to localize the set of possible positions for an under-
water robot in a known environment such as a pool or a harbor. Figure 1c shows the
state estimation of a robot in a pool performing cycles and taking two measurements
in the pool. The set of starting positions for the cycle is well enclosed in the pink
area.
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(a) d = [4, 5] (b) d = [5,+∞] (c) Set of possible position of
a robot performing cycles in a
pool.

Figure 1: Paving of separators on the remoteness constraint
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Introduction

The remoteness constraint is fundamental in mobile robotics. It re-
presents the constraint between the distance measured by a sensor
within a measurement cone and an obstacle segment.

m

ab h1h2 h

u1
u2

Figure 1 – Remoteness of a segment [a,b] relative to a point m and two unit
vectors u1 and u2

Measured distance

The remoteness constraint ensures that the measured distance d is
on of {||ma||, ||mb||, ||mh||, ||mh1||, ||mh2||,+∞}, with

||mh|| = det(ab, am)

||ab|| (1)

∀p ∈ {a,b}, ||mp|| =
√

(mx − px)2 + (my − py)2 (2)

∀i ∈ {1, 2}, ||mhi|| =
det(ab, am)

det(ui, ab) (3)

(4)

Case 〈u1, ab〉 ≥ 0 ∧ 〈u2, ab〉 ≥ 0

det(ab, am) ≥ 0

det(u2 , am) ≥ 0

det(u
1 , am

) ≥
0

det(u
1 ,bm

) ≤
0 ||mh1|| ||ma||

ab

u1

u2

Figure 2 – Remoteness when 〈u1, ab〉 ≥ 0 ∧ 〈u2, ab〉 ≥ 0

Case 〈u1, ab〉 < 0 ∧ 〈u2, ab〉 ≥ 0
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Figure 3 – Remoteness when 〈u1, ab〉 < 0 ∧ 〈u2, ab〉 ≥ 0

Case 〈u1, ab〉 < 0 ∧ 〈u2, ab〉 < 0

det(ab, am) ≥ 0

det(
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Figure 4 – Remoteness when 〈u1, ab〉 < 0 ∧ 〈u2, ab〉 < 0

Results

(a) u1 =

[
0.25
−1

]
, u2 =

[
0.75
−1

]
(b) u1 =

[
−2
−1

]
, u2 =

[
−1
−1

]

(c) u1 =

[
0.75
−1

]
, u2 =

[
0.75
−1

]

Figure 5 – Paving of the separator for d = [4, 5]

Application

The remoteness constraint can be applied to the localization of an
underwater robot in a known pool, using an echosounder to measure
the distance to the pool walls, and by performing only two measure-
ments.

Figure 6 – Localization of an underwater robot in a known environment using
remoteness constraint
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Introduction

Autonomous Underwater Vehicles (AUVs) are emerging as valuable assets in vari-
ous domains due to their ability to operate autonomously in complex and hazardous
environments [1]. To address the numerous sources of uncertainty—ranging from
environmental disturbances (e.g., ocean currents, obstacles) to internal system limi-
tations (e.g., sensor noise, state estimation errors)—AUVs are typically modeled and
controlled using probabilistic approaches [2].

During mine-clearance missions, AUVs use onboard sensors to detect threats located
on the seafloor. The area covered by these sensors during a mission can be represented
as a set. Whether a target is detected then depends on whether its position falls within
this set. However, due to the stochastic nature of the AUV’s motion, the coverage
area itself is random. As a result, detection becomes a probabilistic event: each point
on the seafloor has an associated detection probability that depends on the mission
plan and the AUV’s behavior. To ensure mission effectiveness—especially when a list
of potential mine positions is known—it is crucial to design the mission such that the
detection probability for each target is close to 1.

Detection probability grid

A practical way to visualize the likelihood of detecting points on the seafloor is
through a detection probability grid. This grid is a 2D matrix, where each cell
corresponds to a specific point on the seafloor, and the associated value represents
the probability of detection at that point [3].

We propose to compute an empirical estimation of this grid using a Monte-Carlo based
method [3]. A large number of AUV simulations (trajectories) are generated based
on a stochastic model. For each simulated trajectory, the area covered by the AUV’s
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sensor is computed [4]. A 2D grid is then overlaid on the seafloor, where each point
represents a potential location for detection. For each point and each simulation, a
binary realization value is assigned: 1 if the point lies within the covered area, and 0
otherwise. By averaging these values across all simulations, we obtain an empirical
estimate of the detection probability for each grid point. By applying this procedure
across all points in the grid, we obtain a full detection probability map.

Contribution

In practice, it is often infeasible to perfectly compute the covered area for each AUV
trajectory due to the high computational cost. Instead, we typically compute an
approximation of the covered area with a guaranteed precision. This approxima-
tion introduces ambiguity: rather than dividing the space into only two categories
(covered and not covered), the seafloor is partitioned into three complementary re-
gions: definitely covered, definitely not covered, and ambiguous, where it is uncertain
whether a point has been covered or not. Instead of a binary outcome, we must now
work within a three-valued logic [5].

To handle this new framework, the Monte-Carlo method must be adapted accord-
ingly. Recent work has proposed the use of interval-valued realizations to model such
uncertainty [6]. In this approach, each realization is no longer a number but an in-
terval: [1] when the point is definitely covered, [0] when it is definitely not, and [0,1]
when the status is uncertain.

By applying this interval-based Monte-Carlo method to each point in the 2D grid,
the result is an interval detection probability grid, where each grid cell is associated
with an interval of probability reflecting the uncertainty introduced by both uncertain
factors and numerical approximations.
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Introduction

The knowledge of the relationship between different physical quantities of a system is
essential for various applications, such as monitoring its current state, predicting its
future behavior, and designing appropriate controllers. These relationships can, for
instance, be graphically represented by characteristic curves. For example, the char-
acteristic curve of an ideal Ohmic resistor, showing the current-voltage relationship,
is a linear function in R2. In certain applications, it is not feasible to directly obtain
the characteristic curves of interest by measuring the corresponding physical quanti-
ties. One example is the open-circuit voltage (OCV) characteristic of a lithium-ion
battery, which represents the dependence of the OCV on the state of charge (SOC),
a quantity that cannot be measured directly. This characteristic is particularly valu-
able for modeling the dynamic behavior of the battery and for detecting aging or
degradation effects [1]. Typically, obtaining the OCV characteristic involves measur-
ing the OCV during a controlled charging or discharging cycle over several hours,
while simultaneously estimating the SOC. Our goal is to identify this characteristic
during system operation; in earlier work, we therefore proposed an online set-based
identification scheme for this purpose [1, 4]. In this presentation, we outline the iden-
tification scheme with a primary focus on the challenges encountered when applying
it to real-life systems with the identification of the OCV characteristic of a lithium-ion
battery as an example. This work does not present a novel contribution, but rather
provides a comprehensive overview of the identification scheme in a real-life context,
highlighting the associated challenges and selected solution approaches.

Main results

The proposed identification scheme is a two-stage procedure. Since the SOC cannot
be measured directly, it has to be estimated. For this purpose, an interval observer
is employed, which provides estimated lower and upper bounds for the SOC that are
guaranteed to enclose the true value. Based on this estimate together with structural
information resulting from the application of Kirchhoff’s voltage law to an equivalent
circuit model the OCV can be computed, resulting in an interval enclosure for the
true value of the OCV. The estimates for the OCV and SOC can be represented by
interval boxes, which are the Cartesian products of their interval elements. During
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battery charging/discharching, different interval boxes are obtained spanning differ-
ent sections of the OCV-SOC characteristic. Intersecting overlapping interval boxes
reduces the estimation uncertainty and enables the reconstruction of the character-
istic curve [1].
Applying this identification scheme to real-life systems presents certain challenges,
particularly in the state estimation part [2, 3, 5]. These challenges arise mainly from
the structure of the system. The dynamic behavior of a lithium-ion battery can be
captured by a quasi-linear state-space representation where the dynamics matrices
depend on the SOC as one of the state variables. Furthermore, the state variables
are scaled differently, and the output equation is nonlinear.
A classical Luenberger observer approach (a variant of a linear model-based state
reconstruction scheme) does not yield sufficiently accurate or feasible estimation re-
sults in this case and is therefore unsuitable [3]. Instead, an interval observer which
provides more design degrees of freedom is used. However, determining suitable ob-
server gains that lead to feasible and accurate estimation results is challenging for
the case of the lithium-ion batteries. We present several techniques for systemati-
cally parameterizing the observer gains to obtain estimated lower and upper bounds
with a small interval width [5]. Additionally, uncertainties have to be taken into
account during the observer design, which include measurement noise, process noise
and parametric uncertainty. We present different techniques to address this during
the observer parameterization [3].
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Introduction

Let F be a set of floating-point numbers. Let IF be a set of intervals whose end-
points are floating numbers. We propose a method of interval matrix multiplication
using infimum-supremum representation. It is difficult to achieve high performance
for interval matrix multiplication using the infimum-supremum representation. This
is because in modern CPUs, comparing signs and switching rounding mode opera-
tions prevent efficient execution of floating-point operations. Therefore, Knüppel [1]
proposed a method of calculating a product of a point matrix and an interval matrix,
taking advantage of the fact that a product of a floating-point scalar a and an interval
vector [v] = [v,v] (v,v ∈ Fn) can be calculated as

if a > 0 then w= fl▽(a · v); w = fl△(a · v);
else w= fl▽(a · v); w = fl△(a · v);

However, since this is a level-1 BLAS operation, the execution performance is bounded
by memory bandwidth. To overcome this, a fast algorithm of interval matrix mul-
tiplication was proposed using the midpoint-radius representation exploiting level-3
BLAS operations [2]. In the algorithm, the number of floating-point operations in
the product of two interval matrices is 8n3. However, in the worst case, the resultant
interval width is overestimated by 1.5 times. In response to this, Nguyen and Revol
[3] proposed an algorithm that reduces the overestimation to 1.18, where the number
of floating-point operations is 14n3. In addition, Rump [4] improved the algorithm,
reducing the number of floating-point operations to 10n3.

Proposed Method

When implementing floating-point matrix multiplication, blocking technique is used
for efficient computations. Here we focus on mb × nb register blocking for interval
cases. Let [A,A] ∈ IFmb×l, [B,B] ∈ IFl×nb , [C,C] ∈ IFmb×nb be given. Consider
computation of [C,C] ← [A,A] · [B,B] + [C,C]. If the matrix multiplication is
performed using rank-1 updates [5], the operation becomes

[C,C]← [A∗1, A∗1] · [B1∗, B1∗] + · · · [A∗l, A∗l] · [Bl∗, Bl∗] + [C,C]



SCAN 2025, Sept. 22-26, 2025, Oldenburg, Germany 52

where A∗k, A∗k are the k-th column vectors of A and A and Bk∗, Bk∗ are the k-th row
vectors of B and B. Then, the calculation of each [A∗k, A∗k] · [Bk∗, Bk∗] is given by

for j = 1, · · · , nb do [C∗j, C∗j]← [A∗k, A∗k] · [Bkj, Bkj] + [C∗j, C∗j].

We calculate the product of an interval vector [A∗k, A∗k] and an interval scalar
[Bkj, Bkj] using the proposed multiplication algorithm as follows:

if Bkj < 0 then

C∗j = min(fl▽(C∗j + A∗k ·Bkj), fl▽(C∗j + A∗k ·Bkj))

C∗j = max(fl△(C∗j + A∗k ·Bkj),fl△(C∗j + A∗k ·Bkj))

elseif Bkj > 0 then

C∗j = min(fl▽(C∗j + A∗k ·Bkj), fl▽(C∗j + A∗k ·Bkj))

C∗j = max(fl△(C∗j + A∗k ·Bkj),fl△(C∗j + A∗k ·Bkj))

else

C∗j = min(fl▽(C∗j + A∗k ·Bkj), fl▽(C∗j + A∗k ·Bkj))

C∗j = max(fl△(C∗j + A∗k ·Bkj),fl△(C∗j + A∗k ·Bkj))

This is an improved version of Knüppel’s algorithm. Based on this, we implement the
proposed multiplication algorithm. The number of floating-point operations in the
proposed algorithm is 8n3. The proposed algorithm is suitable for SIMD operations
and has a high reusability of data. When using Intel AVX-512 instructions, it is
possible to calculate C and C simultaneously without changing the rounding mode,
since there are arithmetic operations with directed rounding for addition and multi-
plication. In this case, the number of comparing signs operations is n3

mb
. In addition,

since there is no data dependency between the calculations of C and C, they can
be calculated separately. If doing so, the number of rounding mode changes in the
proposed algorithm becomes two and the number of comparing signs operations is
2n3

mb
. We will show numerical results in our talk.
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Introduction

Let matrices A ∈ Rn×n and B ∈ Rn×n be given, where A is nonsingular and B is
symmetric and positive definite. Let R denote the upper triangular Cholesky factor
of B. This talk considers computing an enclosure of the spectral norm of RA−1RT ,
i.e.,

ρ ≤ ∥RA−1RT∥2 ≤ ρ. (1)

To compute ρ and ρ, the previous work employs the interval Cholesky decomposi-
tion [3] and spectral norm verification [2], which have been used in computer-assisted
proofs for differential equations [1]. However, it is known that the interval Cholesky
decomposition suffers from issues in terms of computational cost and numerical sta-
bility. Therefore, we propose a method to verify ρ := ∥RA−1RT∥2 without using
interval Cholesky decomposition.

Proposed Method

The proposed method considers the smallest singular value σmin of the matrixR−TAR−1,
because σmin = ρ−1. To develop the verification method, we define a singular value
decomposition with respect to an oblique inner product [5] as follows:

A = UΣV T , UTBU = V TBV = I, U,Σ, V ∈ Rn×n, (2)

where I is the identity matrix and Σ is a diagonal matrix with positive entries.
Let Û , Σ̂, V̂ be approximations of U,Σ, V , respectively. Suppose

α := ∥ÛTBÛ∥2 < 1, β := ∥V̂ TBV̂ ∥2 < 1. (3)

Then for S := ÛTAV̂ , we have

σmin(S)√
(1− α)(1− β)

≤ ρ−1 ≤ σmin(S)√
(1 + α)(1 + β)

, (4)
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where σmin(S) denotes the smallest singular value of S.
Define

Ā =

(
O AT

A O

)
, B̄ =

(
B O
O B

)
, (5)

where O is the zero matrix. Then, Ā and B̄ are symmetric, and B̄ is positive definite.
It follows that

∥R̄Ā−1R̄T∥2 = ρ, (6)

where R̄ is the upper triangular Cholesky factor of B̄.
The matrix R̄Ā−1R̄T has eigenvalues ±ρ. Therefore, if Ā − θB̄ with θ > 0 has

n positive and n negative eigenvalues, then it follows that ρ < θ−1. To count the
number of positive and negative eigenvalues, one can use the method based on LDLT

decomposition [4]. A key advantage of this method is its applicability to sparse
matrices A and B.

The proposed methods eliminate the need for interval Cholesky decomposition
in enclosing ρ. We demonstrate through numerical experiments that the proposed
method is superior in terms of computation time, accuracy, and numerical stability.
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Introduction

A verified enclosure of matrix multiplication results plays a fundamental role in re-
liable numerical computations arising in numerical linear algebra. Given an m-by-n
floating-point matrix A and an n-by-p floating-point matrix B, the goal is to compute
matrices (Cd, Cu) or (M,R) such that

Cd ≤AB ≤ Cu, (1)

M −R ≤AB ≤M +R, (2)

where all entries of R are non-negative. The expressions (1) and (2) are referred to
as the infimum-supremum form and the midpoint-radius form, respectively. Several
enclosure methods have been proposed with a trade-off between computational cost,
memory consumption, and the tightness of the resulting enclosures.

A typical method for obtaining Cd and Cu in (1) employs directed roundings as
defined in the IEEE 754 standard. Let fl▽(·), fl(·), and fl△(·) denote floating-point
evaluations of the expressions in parentheses, where the rounding modes are specified
by IEEE 754 as follows: downward rounding for fl▽(·), rounding to nearest for fl(·),
and upward rounding for fl△(·). Due to space limitations, we assume throughout this
abstract that neither overflow nor underflow occurs.

The matrices Cd and Cu in (1) can be computed as

Cd := fl▽(AB), Cu := fl△(AB). (3)

If a tighter enclosure than (3) is required, two methods are proposed in [1]. For the
form (2), the matrices M and R can be computed as

M := fl(AB), R := nu |A||B|, (4)

based on the method in [3], where u is the unit roundoff, and the absolute value
symbol for a matrix denotes the matrix obtained by taking the absolute value of each
entry. Approaches such as (3) and (4) make use of high-performance BLAS matrix
multiplication routines.
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The proposed method

We propose a fast and tight enclosure method that is not based on a BLAS function
and that produces a tighter interval than (3). In addition, the proposed method
exhibits lower memory consumption compared to the methods presented in [1]. For
floating-point numbers a, b, and c, we obtain x and y such that x+ y ≈ ab+ c. The
following algorithm was introduced in [4]. If 2|ab| ≤ |c|, |x+ y− (ab+ c)| ≤ u2|ab+ c|
holds [2].

function [x, y] = FastTwoFMA(a, b, c)
x = fma(a, b, c);
y = fma(a, b, c− x);

We extend the above algorithm to dh+dℓ ≈ ab+ch+cℓ where a, b, ch, cℓ, dh, dℓ ∈ F
and fl(ch + cℓ) = ch.

function [dh, dℓ] = FastTwoFMA s(a, b, ch, cℓ)
[dh, dℓ] = FastTwoFMA(a, b, ch);
dℓ = dℓ + cℓ;

We introduce a floating-point matrix W and compute the matrix product AB as
(AB +W )−W using FastTwoFMA s. We set W to satisfy W ≥ 3(1 + nu)|A||B|.
In this case, the condition |ch| ≥ 2|ab| is always satisfied within FastTwoFMA s.
Let the computed result be T1+T2; then we have |T1+T2−AB| ≤ n2u2(1+u)n−2W .
This result can be interpreted as a midpoint-radius form. In the presentation, we will
provide a detailed comparison of the computational efficiency and the tightness of
the resulting enclosures with those achieved by BLAS-based approaches. Although
FastTwoFMA s involves four arithmetic operations, recent CPUs support simulta-
neously executing both fused multiply-add (FMA) and addition, and thus it is faster
than four FMA operations.
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Introduction

In recent years neural networks have received considerable attention both from re-
searchers and end-users. They are applied in numerous domains, such as computer
vision and speech recognition. Most research efforts have been directed toward de-
veloping increasingly accurate and reliable networks. To train reliable, or so-called
robust networks, various training techniques have been proposed. The vast major-
ity of these methods fall into two categories. Adversarial training-based algorithms
[1] optimize the network parameters on adversarial examples. Certified training [2]
methods, on the other hand, compute bounds on the network outputs and minimize
the worst-case scenario inferred from these bounds. While most existing research has
concentrated on input-space attacks, parameter-space attacks on networks have also
come into focus, which manipulate the network’s parameters to induce adversarial be-
havior. In response, training methods have been developed to incorporate parameter
stability into the training process. Among these, the most widely used in the liter-
ature is the Adversarial Weight Perturbation [3] (AWP) method. However, its main
drawback is that it significantly underestimates the worst-case scenario, resulting in
insufficient protection against parameter-space attacks.

In this work, we identify the primary weakness of the AWP algorithm by intro-
ducing a certified training framework that, in many cases, increased the networks’
resistance to parameter-space attacks.

Training algorithms

The goal of input-robust training is to minimize the expected loss within a p-norm
bounded ball around the input point x: Bp(x, ϵ) = {x̌ | ||x̌− x||p ≤ ϵ}.

θ = argmin
θ

Ex,y[ max
x̌∈Bp(x,ϵ)

Lθ(x̌, y)] (1)

Here, θ denotes the parameters of the neural network, L is the loss function, and ϵ
is the radius around x within which robustness is desired. During training, the inner
maximization problem is typically approximated using either gradient-based opti-
mization (adversarial training) or interval-based methods (certified training). While
certified training is generally more unstable, it offers higher provable robustness by
eliminating the unreliability inherent in gradient-based approaches.
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When parameter perturbations are also taken into account, the robust training
objective in Equation 1 is extended as shown in Equation 2, where λ defines the
radius of allowable parameter perturbations:

θ = argmin
θ

Ex,y[ max
θ̌∈Bp1 (θ,λ), x̌∈Bp2 (x,ϵ)

Lθ̌(x̌, y)] (2)

The Adversarial Weight Perturbation (AWP) algorithm approximates the nested
maximization problem using an iterative, gradient-based optimization procedure,
which leaves the model vulnerable to both input- and parameter-based attacks.

In this work, the Adversarial Parameter Propagation (APP) algorithm was pro-
posed to mitigate the shortcomings of AWP. Our method combines gradient-based
search with interval arithmetic to compute a more accurate approximation of the inner
maximization problem, thereby improving robustness against input and parameter
perturbations.

Results

Several neural networks were trained based on the CNN7 architecture for the CIFAR-
10 image classification task, employing different values of the regularization parameter
λ. As presented in Table 1, the proposed models show better performance on both
clean and adversarial inputs compared to the AWP algorithm. The parameter ro-
bustness of our models was evaluated using the Adversarial Parameter Attack [4]. For
smaller attack radii, our models demonstrated approximately 15% greater resistance,
while for larger radii, we observed up to a 30% improvement in robustness.

ϵ λ Algorithm Accuracy Robust Accuracy

2
255

0.01
APP 63.8% 49.63%
AWP 60.68% 44.16%

0.02
APP 60.77% 48.18%
AWP 58.1% 43.70%

Table 1: Clean and robust accuracy on the CIFAR-10 test set
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Introduction

Recent machine learning models are sensitive to adversarial input perturbation. That
is, an attacker may easily mislead an otherwise well-performing image classification
system by altering some pixels. It is quite challenging to prove that a network will
have correct output when changing slightly some regions of the images. This is why
only a few works targeted this problem. Although there are an increasing number of
studies in this field, really reliable robustness evaluation is still an open issue. We
will present some theoretical results on the dependency problem of interval arithmetic
critical in interval based verification.

Main results

We investigate the overestimation amounts we can face while evaluating trained, fully
connected feed forward networks with the ReLU activation function. We study the
situation when the weights of such a network are given as real numbers, we fix an
input (e.g. a picture), and we test how large intervals around the input values can
be verified to result in the same classification we obtained for the real case. In the
next theoretical investigations we assume that interval arithmetic is calculated in the
precise way, i.e. we exclude the effect of outwards rounding.

Proposition 1. For a fully connected feed forward standard artificial neural network
the overestimation size w(F (X))−w(f(X)) of the inclusion function can be zero only
if at least one of the following conditions are fulfilled:

• all input intervals are of zero width: w(xi) = b− a = 0,

• For each output, the weights associated with all input variables xi have the same
sign, either all nonnegative or all nonpositive, and

• all the final evaluation functions calculating the outputs of the network have
negative arguments.

These conditions are sufficient one by one, and a proper combination of them is
also necessary.
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Consider now the question which are the major factors for the overestimation sizes
in the same setting.

Proposition 2. For a fully connected feed forward standard artificial neural network
of k input intervals, m neurons in each of the even number of n hidden layers, and all
weights wi bounded by |wi| ≤ W , the amount of overestimation w(F (X))− w(f(X))
of the inclusion function of an output is not more than 2n/2mn/2W n

∑k
i=1w(Xi).

Corollary 1. A direct consequence of Proposition 2 is that we can have the same
amount of overestimation due to the dependency problem with decreasing the number
of hidden layers while increasing the number of neurons in a layer and vice versa.

The main consequence of our theoretical study is that we can control the amount
of overestimation caused by the dependency effect of interval arithmetic by forcing
advantageous parameters such as low absolute bound of weights, or minimizing the
number of hidden layers – while keeping the expected level of precision and recall.
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Interval-values and Intuitionistic fuzzy logics: a brief reminder

When experts describes how they solve tasks – e.g., how expert drivers control their
cars – they usually use imprecise (“fuzzy”) words from natural language such as small.
To describe this knowledge in precise computer-understandable terms, Lotfi Zadeh
proposed to ask the expert to assign, to each possible value x of the corresponding
property, a degree m ∈ [0, 1] to which x satisfies the property – e.g., to which x is
small. He called this technique fuzzy.

Experts often use logical connectives ∗ – e.g., “and” and “or” – in describing their
decisions. For example, a condition for a certain action may be that a car in front is
close and that it brakes a little bit. To estimate the degree c of a statement A ∗ B
based on degrees a and b of its component statements A and B, Zadeh proposed
to take c = f(a, b), where f : [0, 1] × [0, 1] → [0, 1] is a (non-strictly) increasing
continuous function for which for a, b ∈ {0, 1}, the value f(a, b) is the usual truth
value of the corresponding logical operation.

This approach led to many successes, but its representation of expert knowledge
was not always perfectly adequate. Two ideas were proposed to make it more ad-
equate. The first idea was to take into account that, just like an expert cannot
describe the exact value of control – e.g., he/she only says “a little bit” – this same
expert cannot meaningfully describe his/her degree of belief by a single number. The
expert’s opinion would be described more adequately if we allow the expert to use
the interval [m,m] of possible values. This is known as interval-valued fuzzy logic.
In line with general interval techniques, once we know the degrees [a] = [a, a] and
[b] = [b, b] of statements A and B, it is reasonable to estimate the degree of A ∗ B
as f([a], [b])

def
= {a ∗ b : a ∈ [a], b ∈ [b]}. Since f(a, b) is increasing, this leads to

f([a], [b]) = [f(a, b), f(a, b)].
The second idea was to take into account that when the expert is not 100% sure

that x is small, this means that he/she also has arguments that x is not small. So, in
addition to the degree m to which the property is true, it makes sense to also ask for
the degree m− to which this property is false. This is known as intuitionistic fuzzy
logic. We assume that there is no inconsistency, so m + m− ≤ 1. Then, when we
have pairs (a, a−) and (b, b−) corresponding to A and B, it is reasonable to apply f



SCAN 2025, Sept. 22-26, 2025, Oldenburg, Germany 63

to a and b, and to apply a de Morgan-dual operation g(a, b)
def
= 1− f(1− a, 1− b) to

the values a− and b−.
These two ideas have a different meaning, but from the purely mathematical

viewpoint, they are equivalent: we can map an interval [x, x] to a pair (x, 1−x) and,
vice versa, a pair (a, a−) to an interval [a, 1 − a−]; then, all operations remain the
same.

Accounting for possible inconsistencies naturally leads to
Kaucher arithmetic

In some cases, there is an inconsistency between arguments for and against the same
statement. In such cases, it makes sense to consider pairs (a, a−) for which a+a− > 1;
see, e.g., [1]. If we apply the above-mentioned transformation (a, a−) 7→ [a, 1 − a−]
to such pairs, we get an “interval” [a, a] for which a > a. In interval computations
community, such intervals are known as improper, with special arithmetic – first
proposed by Kaucher – extending interval arithmetic to such intervals.

As shown in [2], Kaucher arithmetic operations can be interpreted as follows:
while the usual interval operations describe the set of all possible values f(a, b) when
a ∈ [a] and b ∈ [b], Kaucher operations describe the intersection of all possible ranges
of f(S) over all connected sets S ⊆ [a] × [b] whose projections to a- and b-axis are
exactly [a] and [b].

Our main result is that for every non-strictly increasing function f(a, b), the results
of applying f to thus extended intuitionistic pairs correspond exactly to Kaucher
arithmetic.

Other relations between fuzzy and Kaucher arithmetic

If we know the sets [a] and [b] of all possible values of a and b, then the set of all
potentially possible values of a+ b is the interval sum [a]+ [b], while the Kaucher sum
[a]+K [b] is the set of all definitely possible values. These two intervals are the simplest
case of a family of embedded intervals – which is exactly what a fuzzy number is.
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Shapley value: a brief reminder

Many successes are due to collaboration, be it in manufacturing or in research. How
to fairly divide the dividends between all n participants? For example, when we
evaluate individual researchers, how to fairly distribute the overall points-for-paper
between paper co-authors? In this division, it is reasonable to take into account what

would be the productivity v(S) if only participants from the set S ⊆ N
def
= {1, . . . , n}

worked together.
The answer to this question was produced by the future Nobelist Lloyd Shapley.

He formulated natural conditions: additivity; symmetry; and that a person who does
not contribute anything, i.e., for whom v(S ∪ {i}) = v(S) for all S, should not get
anything. He proved that there is only one distribution scheme that satisfies these
conditions, in which Person i gets the amount xi(v) =

∑
a(|S|) · (v(S ∪ {i})− v(S)),

where the sum is taken overall all sets S for which i ̸∈ S, |S| denoted the number of
elements in a set S, and

a(m)
def
=
m! · (n−m)!

n!
.

This expression for xi(v) is known as the Shapley value.
Lately, Shapley value has also been actively used in machine learning, to decide

which of n features used to make a decision are most important. In this case, v(S) is
the effectiveness that we get when we only use features from the set S.

Need for interval uncertainty

In practice, we rarely know the exact values v(S). Often, we only know an interval
[v](S) = [v(S), v(S)] that contains v(S). The agreement about division is usually
decided before the project starts, in which case even the future value v(N) is not
known exactly.

In this case, a reasonable idea is to come up with intervals [x]i([v]) = [xi([v]), xi([v])].
Then we can use Hurwicz approach and make a distribution

xi(v) = α · xi(v) + (1− α) · xi(v),
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where α is determined from the condition that the sum of these values should be equal
to the overall amount v(N) – the overall monetary amount or the overall number of
points for this particular paper.

Current interval method and its limitation

The paper [1] considers similar conditions to Shapley’s and shows that under these
conditions, we should take, as bounds on xi([v]), the Shapley values corresponding
to the functions v(S) and v(S). In many cases, this approach leads to reasonable
results, but in other cases, it does not.

For example, for n = 2, if v(S) = 0 for all S, v(∅) = v(∅) = v({x2}) = 0, and
v({x1}) = v({1, 2}) = 1, then Person 2 gets nothing, although it is possible, e.g., that
the actual values are v({1, 2}) = 1 and v({1}) = v({2}) = 0, in which case, due to
symmetry, Person 2 should get exactly the same amount as Person 1.

Analysis of the problem and resulting solution

The reason for the above problem is that while the condition that v(S ∪ {i}) = v(S)
for all S indeed means that i did not contribute anything, but, as the above example
shows, a similar interval equality [v](S ∪ {i}) = [v](S) for all S does not necessarily
imply that Person i was not contributing.

So, a natural idea is to take, as [x]i([v]), the set of all possible values xi(v) for all
functions v for which v(S) ∈ [v](S) for all S. To find these intervals, let us take into
account that the Shapley value formula can be reformulated as

xi(v) =
∑

S:i∈S

a(|S|+ 1) · v(S)−
∑

S:i ̸∈S

a(|S|) · v(S).

Thus, by using usual interval computations, we get:

xi([v]) =
∑

S:i∈S

a(|S|+ 1) · v(S)−
∑

S:i ̸∈S

a(|S|) · v(S);

xi([v]) =
∑

S:i∈S

a(|S|+ 1) · v(S)−
∑

S:i ̸∈S

a(|S|) · v(S).
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Introduction

This paper introduces a new wrapper called a buche, the French name for log (think
of logs made from a straight trunk obliquely and bluntly cut with an axe). Buches are
used to enclose a part of the solution set defined by nonlinear equations. We show
that buches, combined with interval methods [2], may allow us to obtain a better
accuracy for the approximation with less computations.

Notion of buche

The buche associated with a box [x] ⊂ Rn, a matrix A, a vector b and the inflation
rate ρ is the set ⟨x⟩ defined by

⟨x⟩ = ⟨[x],A,b, ρ⟩
= {x ∈ [x],∃p,Ap = b and ∥x− p∥ < ρ} . (1)

An illustration is given by the figure below. The quantity ρ = rad(⟨x⟩) is called the
radius of the buche ⟨x⟩. The affine space Ap = b is called a flat.

Our motivation for using buches is to have the following properties

• The box [x] in the structure of the buche will allow us to build a nonoverlapping
covering of X. This is not the case for zonotopes [4], [1].

• A buche can easily be bisected, contrary to ellipsoids [3].

• The axis-aligned projection is easy with buches, contrary to polyhedrons.

• A first order approximation is possible, contrary to boxes.
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The buche (green) of the picture corresponds to the intersection
between the box [x] and a cylinder

Contribution

Buches will be used to represent the solution set of an underdetermined set of non-
linear equations. It will be shown that the use of buches makes it possible to increase
the accuracy of the approximation of the solution set compared to classical interval
techniques.
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Introduction

Absolute value linear programming (AVLP) problems [2, 3] are mathematical pro-
gramming problems involving linear functions and absolute values. They can be
expressed in a canonical form as follows

f(A, b, c,D) = max cTx subject to Ax−D|x| ≤ b,

where c ∈ Rn, b ∈ Rm and A,D ∈ Rm×n. We assume that D ≥ 0; otherwise the
negative coefficients can be equivalently reformulated by linear constraints. Note that
the absolute values make the problem NP-hard.

We study the variations of the optimal value f(A, b, c,D) when the input coeffi-
cients vary in the interval domains. Concretely, let interval vectors c, b and interval
matrices A,D be given. Then the corresponding interval AVLP problem is a family
of AVLP problems with A ∈ A, b ∈ b, c ∈ c and D ∈ D.

Notation. Intervals, interval vectors and matrices are defined by their lower and
upper bounds, such as A = [A,A], or by its midpoint and radius matrices, such as
A = [Ac − A∆, Ac + A∆]. We also make use of the Rohn’s shortcuts: for an interval
matrix A, r ∈ [−1, 1]m and s ∈ [−1, 1]n, we define

Ar,s = Ac − diag(r)A∆ diag(s) ∈ A,

and for an interval vector c and s ∈ [−1, 1]n, we define

cs = cc + diag(s)c∆ ∈ c.

Range of optimal values. The goal is to compute the best and the worst case
optimal values defined, respectively, as

f = max f(A, b, c,D) subject to A ∈ A, b ∈ b, c ∈ c, D ∈ D,

f = min f(A, b, c,D) subject to A ∈ A, b ∈ b, c ∈ c, D ∈ D.

This problem was thoroughly discussed for interval-valued linear programming
problems [1] and certain types of interval nonlinear programming problems. How-
ever, for the AVLP problems, it seems that the optimal value range has not been
investigated so far.

We assume that D ≥ 0. Basically, this assumption is without loss of generality,
but simplifies the overall analysis.
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Main results

Best case optimal value. The best case optimal value f can be completely char-
acterized by means of a reduction to one real AVLP problem.

Proposition 1. We have

f = max cTc x+ cT∆x subject to Acx− (A∆ +D)|x| ≤ b.

Worst case optimal value. A closed-form characterization of f is unknown so
far. We can fix b = b and D = D, since the worst case optimal value is attained
in this setting. The other interval coefficients are much more difficult to handle.
Nevertheless, we propose a convenient lower bound formula.

Proposition 2. We have

f ≥ fL,

where

fL = max cTc x− cT∆|x| subject to Acx+ (A∆ −D)|x| ≤ b.

The lower bound fL may or may not be tight. However, under certain assumptions

we can prove f = fL.

Proposition 3. Let s∗ be the sign of the optimal solution for fL. If the optimal
solution to

f(Ae,−s∗ , c−s∗) = max cT−s∗x subject to Ae,−s∗x−D|x| ≤ b

has the same sign s∗, then f = fL.
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Introduction

Basis stability is a topic that is well studied in the domain of interval linear pro-
grams [1], [2]. We define the stability of a given interval linear program with respect
to a given basis as the condition that the basis is optimal for all realizations. There
are some useful consequences of basis stability in some of the formulations, including
the convexity of the set of optimal solutions.

The idea of generalizing basis stability is nothing new, one example is [3], where
the authors define the notion of basis stability for the class of non-linear non-negative
convex problems and describe its consequences. But there is still a lot of insight
to be gained by applying the array of results in the area of interval analysis, namely
characterizations of strong solvability and study of linear systems with linear para-
metric dependencies.

Our results

We propose a generalized definition of basis stability for the case of interval convex
quadratic programs of the following forms

min
1

2
xTQx+ qTx : Ax ≤ b, (A)

min
1

2
xTQx+ qTx : Ax = b, x ≥ 0, (B)

min
1

2
xTQx+ qTx : Ax ≤ b, x ≥ 0. (C)

where Q is positive definite. We also examine the general form combining both
equations and inequalities with both non-negative and free variables and the case
with convex quadratic inequality constraints.

Consulting the KKT optimality conditions, we can define a basis analogously
to that in the case of linear programs. The KKT conditions then yield a linear
or a quadratic system of equations and inequalities which characterizes the optimality
of the given basis.

If we now let the coefficients of Q, q,A, b vary within some intervals, we can
thus define an interval quadratic program as a set of real quadratic programs. The
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notion of basis stability now means a given basis is optimal for each real quadratic
program from the given set, and stability under a given basis can now be characterized
by the strong solvability of the interval version of the KKT system with some linear
parametric dependencies.

The situation is however much less favorable than in the case of interval linear pro-
gramming. The interval version of the KKT system has linear parametric dependen-
cies, which greatly increases the complexity of verifying basis stability. On the other
hand, for quadratic interval linear programs, basis stability does not guarantee con-
vexity of the set of optimal solutions for any of the forms.

Under basis stability, we are still however guaranteed compactness and connect-
edness of the set of optimal solutions and we examine various special cases, where
we can avoid parametric dependencies in the characterizing system and check basis
stability more efficiently.
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Introduction

We focus on Constraint Satisfaction Problems (CSPs) defined by a triple (X,D,C)
such that X = {x1, . . . , xn} is a set of n variables, D(xi) is the domain of each
variable xi ∈ X, and C = {C1, . . . , Cm} is a set of constraints such that each con-
straint is a relation defined over a subset of X. When variable domains are finite
sets, the problem is called a discrete CSP; when they are intervals in R, it is called
a continuous CSP. A solution is a set of values {v1, . . . , vn} such that vi ∈ D(xi)
for each variable xi ∈ X and each constraint in C is satisfied, i.e., the relation is
verified for these values. The principle of algorithms solving a CSP, be it discrete or
continuous, is Branch-and-Propagate or Branch-and-Prune: Branch involves select-
ing a variable and partitioning its domain to create subproblems that are recursively
solved; Propagate/Prune involves exploiting constraints to reduce domains by remov-
ing inconsistent values.

In this work we survey the Branch procedure: our goal is to identify the heuristics
that are successfully used to solve discrete CSPs, in order to determine if they could be
useful for continuous CSPs. The Propagate/Prune procedure is already well studied
for continuous CSPs and will not be addressed here.

Classical strategies

For continuous CSPs, branching usually means splitting a box into two subboxes and
exploring each of them in turn. The algorithm maintains a list of boxes waiting to
be explored. To ensure convergence of the algorithm, Neumaier in [8] suggests to
choose either the oldest box and to bisect its oldest side, or to choose the largest box
and to bisect its longest side. When the constraints appear in a global optimization
problem, a classical choice [5] is to evaluate the cost function f on each box X in the
waiting list: f(X) = [f(X), f̄(X)], and to choose the one with the least f(X) (resp.

f̄(X)) in case of minimization (resp. maximization) problem.
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Heuristics inspired from discrete CSP solving

A principle widely adopted for discrete CSPs is the fail-first principle. It has been
adapted for continuous CSPs, e.g. in [1] as the ”relative smear-based” strategy: the
chosen variable is the one leading to the largest variation of some constraint.

Another principle widely adopted to solve discrete CSPs is the random restart,
so that the search is not stuck in a long and inefficient branch. We are not aware of
many similar approaches for continuous CSPs; however, partly random diversification
search strategies for continuous CSPs were proposed in [3].

Along with random restarts goes the storage of a summary of the non-conclusive
branches explored so far, known as ”nogood recording” [6], with no direct equivalent
for continuous CSPs.

Adaptive strategies

For discrete CSPs, adaptive strategies have been adopted. They consist in attaching
a weight to each constraint and in increasing this weight when the corresponding
constraint leads to a wipe-out of some domain [2]. Weights can also decrease with
time, as some constraints are more useful to prune the domain when the search begins
and some are more useful later: this is called a decaying strategy, see [7] which also
gives a survey of classical strategies for discrete CSPs.

For continuous CSPs, reinforcement learning is introduced in [4].
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Introduction

In this contribution, we apply a long and well known integral inequality to the stability
analysis of nonlinear systems. The main focus is on nonlinear systems with the state
space representation

ẋ = Ax+ g (x) , x (0) = x0, (1)

where x ∈ Rn represents the state vector, A ∈ Rn×n is assumed to be Hurwitz, g
represents the nonlinear part of the system starting with quadratic terms, and x0 is
the initial condition, respectively. Note that in this work, matrices appear as bold
italic uppercase letters, column vectors as bold italic lowercase letters, and scalars as
italic lowercase letters.

We assume that the solutions of system (1) exist for all t ≥ 0. Due to the
eigenvalue condition of A, the origin is asympotically stable, and the problem of
estimating the domain of attraction arises. Using the well known method of Lyapunov
is the main approach to tackle this problem. In this abstract, we will use a different
approach based on the following theorem of Bihari [1].

Theorem 1. Let u be a non-negative, continuous function satisfying

u (t) ≤ α +

∫ t

0

f (s) w (u (s)) ds, t ∈ [0,∞) , (2)

where α ≥ 0 is a constant, f is a non-negative continuous function and w is a
continuous non-decreasing function with w(u) > 0 for all u > 0. Then it holds that

u (t) ≤ G−1

(
G (α) +

∫ t

0

f (s) ds

)
, t ∈ [0, T ] , (3)

where G−1 is the inverse function of

G (x) =

∫ x

x0

dy

w (y)
, x ≥ 0, x0 > 0,

and T is determined such that the expression inside G−1 in inequality (3) remains
within the domain of G−1 for all t ∈ [0, T ].
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Application to the Nonlinear State Space Representation

The nonlinear system (1) is equivalent to the following integral equation

x (t) = eAt x0 +

∫ t

0

eA(t−τ) g (x (τ)) dτ.

Taking the norm on both sides, we obtain

∥x (t)∥ ≤M ∥x (0)∥ e−βt +MC e−βt

∫ t

0

e−βτ u (τ)2 dτ, (4)

where M > 0, β > 0 and C > 0 are constants. Here, M and β arise from the bound

∥eAt∥ ≤M e−βt,

and C provides an upper bound for the nonlinear term according to

∥g (x (τ))∥ ≤ C ∥x (τ)∥2.

The constant β corresponds to the absolute value of the real part of the rightmost
eigenvalue of the matrix A. This choice of β ensures exponential decay of the linear
part. Ideally, β should be as large as possible, while M and C should be as small as
possible to ensure tight estimates. Introducing the substitutions

u (t) = eβt ∥x (t)∥, α =M ∥x (0)∥, f (τ) =MC e−βτ , and w (y) = y2,

we can now rewrite system (1) into inequality (2). This allows the use of inequality
(3), which provides

u (t) ≤ 1
1

M ∥x(0)∥ − MC
β

(1− e−βt)
.

For this inequality to be valid, the denominator on the right-hand side must remain
positive. Taking the limit as t→∞, we obtain the condition

∥x (0)∥ ≤ β

M2C
,

which provides an estimation of the domain of attraction for system (1). This estimate
can, under certain circumstances, be larger than the one obtained using Lyapunov’s
method, which corresponds to a more precise estimate of the domain of attraction.
This is caused by the fact that any matrix norm can be used to build the inequality
(4). By contrast, Lyapunov’s method usually requires a symmetric, positive-definite
matrix to define the norm. This can result in conservative estimates of the domain
of attraction, whereas the novel approach can provide a less conservative estimate.
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Estimation of the Domain of Attraction for

Nonlinear Systems using the Bihari Inequality
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1 Problem Statement

• Stability analysis of nonlinear systems with state-space representation

: state vector

: system matrix, assumed to be Hurwitz

: nonlinear part, starting with quadratic terms

: initial condition

• Due to eigenvalue condition of , the origin is asymptotically stable

• Goal: Estimation of the domain of attraction for the origin

• Classical approach: Lyapunov’s method

→ requires a symmetric, positive-definite matrix to define

the norm

→ can lead to conservative estimates of the domain of

attraction for nonlinear systems
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2 Theorem of Bihari

Let be a non-negative, continuous function satisfying

where is a constant, is a non-negative continuous

function and is a continuous non-decreasing function with

for all . Then it holds

where is the inverse function of

and is determined such that the expression inside xxx in

inequality remains within the domain of x for all xxxx

.

=

3 Application

• Equivalent integral equation of nonlinear system :

• Estimation of the norm:

: constants

• Taking the norm:

• Rewrite System into inequality by introducing the

xlifollowing substitutions

• The use of inequality results in

• For this inequality to be valid, the denominator must

llliremain positive. Taking the limit as leads to

lllithe condition

• Enables estimation of the domain of attraction for

lxsystem

4 Example

System:

5 Conclusion / Outlook

• Novel approach

• Application of Bihari’s Theorem for estimation of the domain of attraction

• Reformulates the problem into an integral inequality

• Provides an explicit bound on system trajectories

• Any matrix norm that satisfies the triangle inequality is acceptable

→ a positive-definite matrix is not required

→ here, for example, the Euclidean matrix norm was used for the

presented example

• Can provide a less conservative estimate than Lyapunov’s method

• Easier to compute, no hard optimization problem needs to be solved
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Introduction

Fractional system models [1, 3] have gained in importance during recent years. They
account for non-standard dynamics with long-term memory effects. Such kind of
dynamics can be found, for example, in electrochemical energy converters such as
batteries and fuel cells. Despite capturing infinite horizon memory properties, the
numerical evaluation may be complicated by a continuous increase in memory and
computing time if no appropriate countermeasures are taken. This is especially criti-
cal in the frame of (pseudo) state estimation, where a periodic integrator reset takes
place to limit both memory demand and computing times in real-time applications.
Additionally, such resets occur when predictor–corrector state estimators are em-
ployed for systems with bounded uncertainty.

Solution Approach

This contribution provides an extension of recent work [4], in which the authors have
proposed a novel method that allows for estimating errors in a set-based form that
result from truncating the memory of fractional system simulators to a finite length.
The general idea is based on error bounds published in [3] for Riemann-Liouville
fractional differential equations. It is then extended by an interval observer similar
to the one in [1] after including the approximation errors by means of integrator
disturbance models. A verified enclosure of the solution sets becomes possible after
converting the point-valued observer of Theorem 1 into a set-based formulation, cf. [4].

Theorem 1 ([4] Point-Valued Observer for Truncation Errors). The fractional dif-
ferential equation model (derivative order 0 < ν ≤ 1, initialized at t0 + T )

[
t0+TD(ν)

t ẑ(t)

t0+TD(ν)
t µ̂(t)

]
=

[
f (ẑ(t)) + µ̂(t)

0

]
+H · (ym(t)− ŷ(t)) (1)

with ẑ(t) = 0 for t ≤ t0+T is an observer for state (ẑ) and additive truncation error
reconstruction (µ̂) after an integrator reset at the point t0 + T with the sensor data
ym(t) and the associated measurement model ŷ(t) = h (ẑ(t)). For stability, the gain
H needs to be chosen so that the error dynamics are asymptotically stable.



SCAN 2025, Sept. 22-26, 2025, Oldenburg, Germany 78

Fig. 1 gives an example for the observer-based state reconstruction and truncation
error estimation for the system model x(0.5)(t) = −x(t)+u(t), z(t) = x(t)−x(t0+T ),
u(t) = 1 with the fractional differentiation order 0.5. It further contains a comparison
between the integrator resetting with and without the proposed observer approach
(obs.) and the true pseudo state evolution.

(a) Simulation of x(t). (b) Illustration of the integrator resetting.

(c) Approximation error of x(t). (d) Truncation error µ(t).

Figure 1: Illustration of the observer-based state and truncation error estimation.
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Introduction

Probabilistic programs are ordinary computer programs with the ability to base deci-
sions on samples drawn from probability distributions. They appear as implementa-
tions of randomized algorithms and communication protocols, as well as descriptions
of physical and statistical models (cf. [1] for an overview). Common questions in
the analysis of probabilistic programs concern quantifying their expected behavior,
e.g. how large is the expected runtime of an algorithm, the expected number of
retransmissions of a network protocol, or the probability that a particle reaches its
destination? Writing correct probabilistic programs is notoriously hard, arguably
even harder than ordinary software development [3].

Over the last 15+ years, verification techniques for probabilistic programs have
thus received much attention. By now, there exists a plethora of proof techniques
for quantifying, amongst others, the termination probability or expected runtimes of
such programs. To enable reasoning about the correctness of feature-rich probabilistic
programs, those techniques must be adapted and combined. However, many of the
existing verification techniques are inspired by different fields in computer science,
mathematics, and engineering, such as control theory, program logics, probabilis-
tic model checking, probability theory, and domain theory. Comparing—let alone
combining—those techniques can thus be non-trivial (cf. [8]).

Modern program verifiers often have a front-end that translates a program and its
specification into an intermediate language, such as Boogie [6]. Such intermediate
languages enable the encoding of complex verification techniques, while allowing for
the separate development of efficient back-ends, e.g. verification condition generators
or symbolic execution engines. In the same spirit, HeyVL [7] is a recently developed
quantitative intermediate verification language, which aims to enable researchers to
(i) prototype and automate new verification techniques for probabilistic programs,
(ii) combine those techniques, and (iii) benefit from improvements to common back-
ends. It is part of the caesar automated verification infrastructure2, which has
been applied successfully to analyze probabilistic programs with different techniques.
Figures 1 and 2 depict examples of probabilistic programs together with a description
of the verified property and the technique encoded in HeyVL.

2https://www.caesarverifier.org
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while (1 < i) {
n := i;

while (0 < n) {
d := flip(0.5);

i := i− d; n := n− 1

} }
Figure 1: Model of Rabin’s Mutal Ex-
clusion Protocol [4]. Property: the
probability to select exactly one pro-
cess (i.e. i = 1) plus the probability of
nontermination is at least 2

3
if n ≥ 2

holds initially. Verified by encoding
weakest liberal preexpectations [5].

while (0 < x) {
i := N + 1;

while (0 < x < i) {
i := unif(1, N)

}; x := x− 1

}
Figure 2: Model of the Coupon Col-
lector’s Problem. Property: the ex-
pected number of loop iterations is
bounded from above by N · HN ,
where HN is the N -th harmonic
number. Verified by encoding the
expected runtime calculus [2].

Outline

This lecture will provide an overview of verification techniques for discrete proba-
bilistic programs. Along the way, we will demonstrate how those techniques can be
automated using the HeyVL intermediate language and caesar.

References

[1] G. Barthe, J.-P. Katoen, and A. Silva. Foundations of Probabilistic Programming.
Cambridge University Press, 2020.

[2] B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. Weakest precondition
reasoning for expected runtimes of randomized algorithms. Journal of the ACM,
65(5), 1-68. 2018.

[3] B. L. Kaminski, J.-P. Katoen, and C. Matheja On the Hardness of Analyzing
Probabilistic Programs. Acta Informatica 56(3), 255–285, 2019.

[4] E. Kushilevitz and M. O. Rabin. Randomized Mutual Exclusion Algorithms Re-
visited. PODC. 1992.

[5] A. McIver and C. Morgan. Abstraction, Refinement and Proof for Probabilistic
Systems. Monographs in Computer Science., Springer, 2005.

[6] K. R. M. Leino. This is Boogie 2. 2008.
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Abstract

We are studying the Cauchy problem for Delay Differential Equations with constant
delays of the following form:

x′(t) = f(x(t), x(t− τ)) t ≥ 0

x(t) = ψ(t) t ∈ [−τ, 0],
with τ > 0 fixed, x ∈ Rd, ψ ∈ C0([−τ, 0],Rd) =: C.

In recent years, a significant effort was made to study and prove various dynamical
phenomena in such systems such as periodic motions, with a particular attention given
to proving chaos in canonical examples such as the Mackey–Glass equation [9]. Several
of the techniques require rigorous numerical computations of a considerable scale, for
instance, see [1, 3, 4, 7, 8, 10, 11] and references therein. However, the infinite-
dimensional nature of the DDEs presents some challenges, such as the complicated
setup, finding good approximations, and carrying out the computer assisted proofs.

For several years we have been working on methods for proving complicated dy-
namics (for example, periodic orbits and symbolic dynamics in DDEs) using rigorous,
forward in time integration of the DDE in the (subspace of) the phasespace C [5, 11].
However, our current method uses a very high dimensional projection of the solutions,
and thus is unfeasible for numerical investigations, especially when preparing data
for computer assisted proofs, for instance, when looking for initial sets in computer
assisted proofs. To address this issue we propose another approach: by using a pseu-
dospectral approximation [2] we reduce the DDE to a finite-dimensional system of
Ordinary Differential Equations (ODEs) while preserving numerically observed dy-
namical features of the original system. Due to the low-dimensionality of the resulting
approximation, the computations are less demanding and can be done using known
tools, such as CAPD rigorous ODE solvers [1], to efficiently verify some dynamical
phenomena that closely mirror those of the full system.

We present some rigorous results for both DDE and the approximating projection
to ODE and we discuss some problems that arise in this approximation. Based on the
experiments, we believe those complications are intrinsic to the nature of DDEs and
solving them in the reduced system might guide the search for the computer assisted
proof of chaotic (symbolic) dynamics in the full DDE system.
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El Niño–Southern Oscillation (ENSO) is a recurring climate phenomenon where
the temperatures of oceanic waters at the western coast of equatorial South Amer-
ica deviate from their mean annual values, coupled with changes in the surface air
pressure [1]. We study a following delay differential equation model for ENSO [1]

h′(t) = −a tanh(κh(t− τ)) + b cos(2πt) (1)

and a limiting case as κ→∞

h′(t) = −a sgn(h(t− τ)) + b cos(2πt) (2)

where h represents the thermocline depth deviation from its annual mean.

These equations exhibit interesting, but only numerically checked properties, such
as bistability and existence of periodic and quasi-periodic solutions. Our goal is to
study and prove the existence of periodic orbits for these equations through the use
of interval arithmetic and rigorous numerical algorithms [2, 3]. Computations were
conducted with the CAPD C++ Library [4].
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Introduction

Autonomous power wheelchairs (PW) indoor navigation requires reliable positioning.
In a clinical environment, e.g., a rehabilitation center, a PW is often moved while it is
switched off, preventing the positioning method to rely on any prior information. We
propose an indoor positioning method that leverages ultra-wideband (UWB) beacons
to provide a confidence domain for the pose of a PW, i.e., a subpaving in which the
true position and orientation of the PW are guaranteed to belong [1].

A typical UWB-based positioning ([2]) setup consists of a set of fixed UWB nodes,
or anchors, measuring their range from UWB nodes installed on the robot, or tags.
UWB range measurements between tags and anchors are performed using two-way
ranging by measuring the time of flight of the UWB signal. The actual range between
the two UWB nodes can be determined, assuming line-of-sight (LOS) propagation.
In practice, UWB signals are also reflected or blocked by the environment. This may
result in non-line-of-sight (NLOS) distances exceeding the true value.

Interval-Based Reliable Pose Estimation

The PW configuration in the world frame Fw is denoted q = (x, y, θ)T. The local
frame attached to the PW is denoted Fr. Let nT be the number of tags installed
on the PW, and nA the number of anchors. We denote Ti, i ∈ {1, . . . , nT}, the
ith tag, and Aj, j ∈ {1, . . . , nA}, the jth anchor. The coordinates of Ti, expressed
in Fr, are denoted rxTi

= (rxTi
, ryTi

, rzTi
). The coordinates of Ti in Fw, denoted

xTi
= (xTi

, yTi
, zTi

), can be expressed as a function of the PW configuration as

xTi
(q) =



x+ rxTi

cos θ − ryTi
sin θ

y + rxTi
sin θ + ryTi

cos θ
rzTi


 . (1)

The fixed coordinates of Aj in Fw, are denoted xAj
= (xAj

, yAj
, zAj

). The
measured range between Ti and Aj is denoted ri,j and is defined as

ri,j = ∥xTi
(q)− xAj

∥2 + βi,j, (2)

where the range measurement error βi,j is assumed to belong to an interval [β] = [β, β].
The PW pose domain computation is defined as a constraint satisfaction prob-

lem (CSP). NLOS or multipath propagation leads to range measurements that are
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Figure 1: Left: Experimental setup. Right: Subpavings from SUB (orange) and S
(green). Black circles are ground truth; orange/green circles are the domain centroids.

greater than the actual ones. For a tag Ti measuring its range to an anchor Aj,
a range upper-bound constraint (corresponding to disk membership) is defined by
LUB

ri,j
: {∥xTi

(q) − xAj
∥2 ≤ ri,j − β}. The set LUB of range upper-bound constraints

for all pairs of tags and anchors at a given epoch is then defined by LUB =
⋂

i,j LUB
ri,j
.

As the PW approaches or exits the anchors’ polygon boundaries, the volume of
the solution set will increase, leading to higher uncertainties and less accurate pose
estimations. To prevent such drawbacks in our positioning method, range lower-
bound constraints can be added to our CSP: LLB

ri,j
: {∥xTi

(q) − xAj
∥2 ≥ ri,j − β}.

Since these constraints may be violated by NLOS outliers, the set LLB of range
lower-bound constraints is defined by the q-relaxed intersection of tag/anchor pair

constraints at a given epoch: LLB =
⋂{q}

i,j LLB
ri,j

A separator SUB is created from the set of constraints LUB, using the forward-
backward interval constraint propagation algorithm [3]. The SIVIA algorithm is ap-
plied with the defined separator to compute inner and outer subpavings of all feasible
PW poses that are consistent with the range upper-bound constraints. Finally, the
SIVIA algorithm is applied again with a separator S = SUB ∩ SLB. The obtained
subpaving is taken as the confidence domain for the PW pose.

Results The proposed method has been tested on a real PW with 4 UWB tags
(Fig. 1). It provided consistent confidence domains over 99.6% of the dataset, con-
taining 4.800 epochs of data. It uses the centroid of all the subpaving boxes to
estimate of the PW configuration. With a mean horizontal positioning error (HPE)
of 8.0 cm, and a mean absolute heading error of 4.5◦, the centroid is shown to be an
accurate pose estimate. The computed domains of feasible PW poses can be used
for safety assessment with respect to the worst-case required navigation performance
criteria or, e.g., to focus the initialization step of a particle filter.
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UWB interval-based reliable pose estimation 
• A typical UWB-based positioning setup consists of fixed anchors in the room 

and mobile tags on the SW to estimate its pose 𝒒 through range 
measurements.

• UWB range measurements are mostly affected by non-line-of-sight 
conditions and multipath signal propagation, leading to overestimated range 
measurements.

• Apply SIVIA algorithm with separator
     to compute inner and outer subpavings of
     the pose uncertainty domain with range
     upper-bound constraints only.

• Estimate minimal number of outliers 𝑞𝑏𝑜𝑥 
by counting, for each inner box, 
inconsistent theoretical ranges.

• Increment 𝑞𝑏𝑜𝑥 by one to add robustness 
against undetected outliers in        .

• Compute the domains of 
     with SIVIA algorithm.

• The outer subpaving is taken as the 
confidence domain for the SW pose. The 
centroid of all the boxes is used as an 
estimate of the SW configuration.

Experiment

Objective: design a set-membership UWB based reliable static positioning
method to provide confidence domain of the pose of a smart wheelchair.

Ultra-wideband Based Smart Wheelchair 
Static Pose Estimation using Interval Analysis

Théo Le Terrier, Marie Babel and Vincent Drevelle
Univ Rennes, INSA Rennes, Inria, CNRS, IRISA - UMR 6074, F-35000 Rennes, France

Background and Objective
• Fully autonomous navigation systems for smart wheelchairs (SW) can 

significantly enhance user independence by enabling tasks such as safe 
transfers or autonomous docking at charging stations.

• Designing such systems requires a reliable localization method that balance 
robustness, efficiency, cost, and acceptability [1].

• Low-cost ultra-wideband (UWB) sensors are used for indoor localization [2].  
The precision of the pose (position/orientation) estimation suffers from non-
line-of-sight (NLOS) signal propagation, uncorrected biases, or multipath  [3]. 
Hence the aim to compute the uncertainty associated with the estimation, 
using interval analysis [4]. 
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Conclusion
➢ The proposed set-membership UWB based reliable static positioning method 

provides consistent pose uncertainty domains, and sufficient pose estimation 
accuracy.

➢ Within the anchors’ polygon, a robust solution can be obtained without using 
q-relaxed intersections by leveraging the positive bias of outliers. To extend 
this approach to the entire geometric space, q-relaxed constraints can be 
incorporated, which are only satisfied under line-of-sight conditions.

➢ The positioning method is a step towards a smart wheelchair control law that 
explicitly accounts for pose estimation uncertainties.

SCAN 2025
20th International 
Symposium on Scientific 
Computing, Computer 
Arithmetic, and Verified 
Numerical Computations

Experimental setup

Domains computed with Sub (orange) and S (green), 
inside the anchors polygon (up) and close to the anchors 
polygon boundary (bottom). Black circle corresponds to 
the ground truth. Orange and green circles are the 
centroids of the corresponding domains.

Set-membership position estimation error (green), and confidence lower and upper-
bounds (orange). The reference is at zero (black).

𝐱Ti
𝐪 =

𝑥 + 𝑟 𝑥𝑇𝑖
cos 𝜃 − 𝑟 𝑦𝑇𝑖

sin 𝜃

𝑦 + 𝑟 𝑥𝑇𝑖
sin 𝜃 + 𝑟 𝑦𝑇𝑖

cos 𝜃

 𝑟𝑧𝑇𝑖
 

➢ 4 anchors in the room, 4 
tags on a real SW, manually 
driven by a user with a 
joystick.
➢ 4800 epochs of data.
➢ Error bounds for the
    UWB range measurements
    are set to
  ± 3𝜎, i.e., ±24 cm.

where β𝑖,𝑗 is the range measurement error. 

Ranging error can be modeled by a centered
interval, i.e., each β𝑖,𝑗 should belong to an 

interval .

Because the outliers are only positive, the 
lower bound remains satisfied, while the 

upper bound is violated.

Line-of-sight conditions

Non-line-of-sight conditions

Range upper-bound constraints
➢ Constraints always satisfied

A separator is created from
the set of constraints

Range lower-bound constraints
➢ Constraints only satisfied in 

line-of-sight conditions

A separator is created from
the q-relaxed intersection [5] of 
tag/anchor pair constraints

➢          and      provide almost identical domains in configuration (a), showing 
that the   -only solution can be used as a positioning method, as long as the 
wheelchair stays close to the center of the anchors’ polygon.

➢ Configuration (b) highlights the contribution of          in unfavorable 
geometrical configurations (i.e., close to, or outside the anchors’ polygon 
boundary).

Reference trajectory (red) and 
estimated trajectory (green) with
the S solution. The anchors 
polygon is represented by yellow 
dotted lines.

Oldenburg, 22-26 September 2025 

Consistent confidence domains over 99.6% of the dataset epochs. Mean horizontal 
planimetric error of 9.8 cm for the           solution, and 8.0 cm for the      solution. 

Coordinates of of 𝑖𝑡ℎ tag 𝑇𝑖  in 𝓕𝑤 as a 
function of SW configuration:

: Coordinates of 𝑗𝑡ℎ anchor 𝐴𝑗 in 𝓕𝑤

Range measurement model between tag 𝑖 and anchor 𝑗 

where

are the coordinates 
of 𝑇𝑖  in 𝓕𝑟 

: Known quantity

Histogram of the UWB range measurement error.

(a)

(b)

anchorResults
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Introduction

In Cyber-Physical Systems (CPSs), numerous hardware and software components in-
teract with each other to achieve a dynamic system behavior that cannot be obtained
with the hardware components alone. The design of large-scale CPSs typically needs
to be supported by systematized development, testing, and verification approaches.
In this frame, the so-called Contract-Based Design (CBD) methodology provides
benefits for reusability of system specifications, supports a correct-by-construction
approach guaranteeing a desired system behavior, and prevents costly design-cycle
reiterations [2, 4].

Following this design approach, the desired overall system behavior can be ensured
by a suitable composition of the formalized specification of the dynamic behavior of
the individual subsystem components. In recent work [5], we have shown how methods
for a set-based reachability analysis can be used to systematically derive contracts
for interconnected dynamic systems with bounded uncertainty. For that purpose, an
iterative procedure was presented that allows for a decentralized determination of
contracts. Its advantage is a reduced computational effort in comparison with the
immediate consideration of the overall system structure. In general, this approach
is applicable to a subset of system models that can be shown to be asymptotically
stable on the basis of the system property of passivity or the small-gain theorem. In
this work, we propose to use this approach for contract-based controller tuning.

Considered System Classes

The iterative derivation of set-based contracts for the specification of the admissible
system behavior is applicable to a large variety of systems, such as the structures
shown in Fig. 1, cf. [5]. These include bi- and uni-directional couplings of subsystems,
parallel connections, as well as nested combinations of each of these structures. With
these basic structures, also classical control loops such as the standardized output
feedback loop, cascaded controllers, and internal model control structures can be
taken into consideration. The iterative derivation of set-based contracts according to
[5] is a generalization of the approach proposed in [3], where we have made use of a
constraint satisfaction differential problem formulation as derived in [1].
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(a) Bi-directional interconnection.

(b) Uni-directional interconnection. (c) Parallel connection.

Figure 1: Representation of the structure of interconnected subsystems in CPSs [5].

Contract-Based Controller Tuning

In this contribution, we extend the work sketched above by the following multi-stage
approach. Firstly, base contracts are derived by means of the procedure published
in [5] for an interconnected system with bounded parameter uncertainty and distur-
bances. Second, we establish an approach for a replacement of controller components
in the sense of contract refinement. This approach leads to outcomes of the reacha-
bility analysis which are true subsets of the results of the first development stage. As
such, the overall structure is still proven to be feasible for the refined system model,
however, it also possesses a reduced sensitivity against the considered uncertainties
in comparison with the baseline solution. It is further shown how this procedure can
be used to validate the use of alternative hardware components (such as actuators or
sensors) in a complex interconnected CPS.
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Abstract

The Sitnikov three body problem (S3BP) is an example of a spatial elliptic 3BP with
oscillatory motion. The configuration has a planar binary consisting of two symmetric
bodies of mass m running around the common center of mass, and the other body
of mass m1, allowed to move along their perpendicular axis of symmetry. Originally
[3] m1 = 0, which made the system a 1.5 degrees of freedom Hamiltonian problem.
Sitnikov showed the existence of oscillatory motion for this case. By ‘oscillatory
motion’ we mean an orbit with the mass m1 going closer and closer to infinity but
always returning to a fixed bounded region.

In our case of 0 ̸= m1 = m, after rescaling, the system can be seen as a 2 d.o.f.
Hamiltonian system with the energy function

H(r, ρ, R, y) =
1

2
R2 +

1

2

(
y2 +

1

ρ2

)
− 1√

r2 + ρ2
− 1

4ρ
, (1)

where r is the position of the third body on the perpendicular axis, ρ roughly describes
the size of the binary, and R, y are the conjugate momenta.

In a joint work with M. Capiński and P. Mart́ın, we prove the existence of oscil-
latory orbits for the Sitnikov 3BP in the case of three equal masses (m1 = m). The
proof relies on analyzing the stable and unstable invariant manifolds of infinity and
their intersections. We construct orbits shadowing these invariant manifolds by the
method of correctly aligned windows, which is a modification of the method used in
[2]. The proof is computer assisted with the use of CAPD C++ library for rigorous
integration of ODEs and computation of Poincaré maps derived from ODEs [1].
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Introduction

Accurate target tracking remains challenging for autonomous systems due to sensor
noise and inherent uncertainties. Particle filters (PF) [1, 2] handle non-Gaussian noise
effectively but require precise noise and accurate models, while set-membership meth-
ods [3, 4] guarantee bounded estimates yet often remain overly conservative. Building
on [5], we propose an Interval Particle Filter (IPF) that integrates the probabilistic
robustness of PF with the bounded-error guarantees of interval analysis for robust
LiDAR-based tracking. The IPF represents the target state using weighted interval
particles {[x(i)

k ], ω
(i)
k }

Np

i=1, updated through prediction–correction cycles. As illustrated
in Figure 1, the proposed IPF algorithm processes uncertain LiDAR measurements
[yk] = {[rk], [αk]}, where [rk] denotes the bounded radial distance to the target’s
barycenter and [αk] the orientation deviation between LiDAR and target frames.

Predicted box particles at k

Predicted box particles at k + 1

{
[x

(i)
k

] = [f ]([x
(i)
k−1

], [uk−1]), [w
(i)
k−1

]

}Np

i=1

{
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k+1

] = [f ]([x
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k
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]
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Figure 1: Principle of the IPF filter.

During prediction, each particle’s state interval is propagated via the inclusion
function [f ]([x

(i)
k−1], [uk−1], [w

(i)
k−1]), where [uk−1] captures bounded control inputs and

[w
(i)
k−1] represents process noise bounds. In correction, predicted measurements [y

(i)
k ] =

[g]([x
(i)
k ]) are compared with actual measurements, and the state intervals are con-

tracted via set inversion as [x̃
(i)
k ] = [x

(i)
k ] ∩ [g]−1([yk] ⊖ [v

(i)
k ]), where [v

(i)
k ] bounds

measurement noise. Weights are updated based on the contraction ratio ω
(i)
k ∝

µ([x̃
(i)
k ])/µ([x

(i)
k ]), and the final state estimate x̂k is obtained from the weighted mid-

points of contracted particles. Systematic resampling is performed when the effective
sample size Neff = 1/

∑
(ω

(i)
k )2 falls below Np/3 to maintain particle diversity.
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Main results

The IPF was implemented using INTLAB and evaluated against a conventional PF for
Autonomous Surface Vehicle (ASV) tracking using LiDAR measurements. Both fil-
ters processed identical LiDAR datasets under bounded noise and initial uncertainty.
As illustrated in Fig. 2, the IPF achieved superior accuracy (e.g., RMSE of 0.0246m
with 200 particles versus 0.0823m for the PF with 1000 particles) while providing
guaranteed state bounds. However, this came at the cost of higher computation time
(e.g., 0.34 s), highlighting the need for further optimization.

Figure 2: Comparison of tracking performance: (a) shows the computed trajectories
of IPF and PF methods, (b) displays the corresponding lateral errors during ASV
tracking.
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Introduction

In many real-world applications, finding a guaranteed solution is crucial. We focus
on the following nonlinear inequality-constrained global optimization problem,

minimize
x ∈ y ⊆ Rn

f(x)

subject to gi(x) ≤ 0, i ∈Mc,
(1)

where f, gi : Rn → R, i ∈Mc are continuously differentiable nonlinear functions. The
interval box y = [y, y] defines the general bound constraints. These constraints can
be expressed as piu(x) = xi− yi and pil(x) = yi−xi, which can be written compactly
as pj(x) ≤ 0, j ∈Mb, where Mb = {iu, il | i = 1, . . . , n}.

In this study, we improve the efficiency of the IBB method using optimality con-
ditions. We improve the Advanced Geometrical Test to discard non-optimal boxes
and avoid using optimality conditions when they are ineffective.

The Normalized Interval Fritz-John Condition System

The normalized interval Fritz-John condition system (NIFJ-CS), as used in [1], defines
a system of interval linear equations for a given box x:

ϕ(t) =




µ0 +
∑

i∈B∪C

µi − 1

µ0 ·∇f(x) +
∑

i∈B µi ·∇pi(x) +
∑

j∈C µj ·∇gj(x)

µi · pi(x) i ∈ B
µj · gj(x) j ∈ C



= 0, (2)

where f(x), pi(x), gj(x) are the inclusion functions and ∇f(x), ∇pi(x), ∇gj(x)
are the inclusions of the gradients. The system includes only active constraints (B =
{i ∈MB | 0 ∈ pi(x)}, C = {i ∈MC | 0 ∈ gj(x)}). The variables are t = [x,µ]T .

Several approaches to solving Fritz-John optimality conditions have been pro-
posed in the literature. As discussed in [2, 3], two main methods are: computing only
the bounds for the Lagrange multipliers (Lagrange estimator method) and enclosing
both the multipliers and the optimal point location (Lagrange estimator+NIFJ-CS
method). Both methods are computationally expensive and often ineffective. There-
fore, an efficient modification is needed.
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Advanced Geometrical Test

Instead of applying the Lagrange estimator or combining it with the NIFJ-CS method,
we perform a preliminary test, the Advanced Geometrical Test. This test discards
the nonoptimal boxes or avoids the unnecessary use of the optimality conditions.

The Advanced Geometrical Test is based on the geometrical interpretation of the
optimality conditions [4]. Geometrically, in the interval settings, the optimality condi-
tions require that there exists a direction in the negative cone of the objective’s gradi-
ent, CF = {d ∈ Rn | d ∈ −µ0∇f(x), µ0 ≥ 0}, which lies in the conic hull of the gradi-

ent enclosures, CH =

{
d ∈ Rn | d ∈

∑

i∈B

µi∇pi(x) +
∑

i∈C

µi∇gi(x), µ ≥ 0, µ ̸= 0

}
.

So, if CF ∩CH ̸= ∅, then the interval box x can contain a local optimizer.
The test performs step-by-step checks on the conic hull CH and the cone CF,

which allows for early termination and saves computation time. The procedure begins
with a check to see if the gradient, denoted by ∇f(x), contains zero, or if any active
constraint’s gradient has zero in its interior. If either condition is satisfied, the box
cannot be reduced. Next, we analyze the sign patterns of the gradient enclosures in
each dimension and classify them as “+”, “–”, “0+”, “0–”, or “+–”. If the signs of the
conic hull and the cone differ in any dimension, the necessary optimality conditions
cannot hold, and the box is discarded. Then, we check if the gradient enclosures of
the active constraints cover all orthants. In this case, CH is full, so the box cannot
be reduced. For an active constraint, we compute the inclusion of the Lagrange
multipliers in each dimension. If the intersection of these inclusions is empty, the
box is discarded. For multiple active constraints, we compute the same inclusions
using the interval hull of the active gradients. Again, if the intersection is empty,
the box is discarded. Lastly, we consider pairs of dimensions where at least one has
sign-consistent gradient enclosure. For each pair, we compute the slope intervals Mf

and Mg. If Mf ∩Mg = ∅, the box is eliminated. Efficient pairing strategies reduce
the running time of the pairing method.

We show that the above Advanced Geometrical Test is very efficient on a large
benchmark. The best variant can save more than 40% of the computational time on
average using the designed test.
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Motivation

The registration of two sets aims at getting all the transformation parameters that
map them. This work covers the case of bounded subsets of R2 and similarity trans-
forms, consisting of a composition of translation, rotation and uniform scaling. The
classical Procrustes-like approach [1] to this problem is to switch from the original
4D transformation to a 1D orientation problem. Since rotational symmetries induce
several solutions for the orientation problem, state-of-the-art methods based on local
optimization are de facto unsuitable when they appear.

We propose a set-membership approach capable of approximating all solutions by
reproducing the Procrustes-like approach and solving the orientation problem, thanks
to set manipulation using descriptive operators called separators [2].

A Procrustes set-membership approach

The algorithmic sequence used to perform the registration of two sets A and B starts
by centering and normalization steps, followed by rotational mapping. The usual
centers and scaling factor come from the fact that A and B are represented as point
clouds in state-of-the-art methods. In our set-membership approach, we have to find
appropriate substitute for these (centers and scaling factors) parameters.

Proposition 1. The minimum enclosing circle [3] provides different but suitable
parameters for the centering and normalization.

Thus, the whole algorithm consists of the following steps:
1. Find the minimum circles centers cA1,2, c

B
1,2 and radii cA3 , c

B
3 . (Fig. 1.A),

2. Describe the normalized sets AN :=
(
A− cA1,2

)
/cA3 , BN :=

(
B− cB1,2

)
/cB3 .

(Fig. 1.B–C),
3. Describe the set of possible rotations Θ = {θ | BN = Rθ · AN}, where Rθ is the

rotation matrix of parameter θ. (Fig. 1.D).
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A B C D

Figure 1: Algorithm in 4 steps: A: Identification of smallest circles (centers and
sizes). B: Centering of sets. C: Normalization of sets. D: Identification of rotation
parameters.

Approximation using separators

Usually involved in a branch and separate algorithm, a separator [2] is an algorithmic
operator capable of representing a set: from an initial domain, it can remove non-
solution parts (contraction) as well as parts containing only solutions.

Using the Codac library (www.codac.io, [4]) which offers a catalog of separators,
it is possible to define a new separator as a sequence of separators handling constraints
involving sets and set operations.

To implement the Procrustes approach, we first give the system of constraints
that defines the problem, and for each variables we propose a separator consistent
with it.

As a result, the algorithm returns separators describing respectively all possible
sets Θ, K, T of rotations θ, (unique) uniform scaling k and translations t.

Finally, by slightly modifying the chain of separators, we will see that the same
approach allows similarity transformations to be approximated completely, including
reflection symmetries.
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Introduction

We propose a method to compute an adaptative inner and outer approximation of the
image of a set by a function. This approximation relies on a cover of the boundary
with parallelepipeds [1]. As any set-based method, it gives a guaranteed yet pes-
simistic result when approximating the image set. If the system has to respect some
constraints (e.g. obstacle avoidance), this pessimism can cause a false alarm. The
method presented here relies on an adaptative slicing of the initial set to limit the
false alarms while saving computation time around the safe states.

Adaptative parallelepipedic approximation

Let us denote by Y the image set and ⟨Y⟩ its parallelpipedic outer-approximation.
Figure 1 shows two possible outer-approximations of Y . On Figure 1a the pessimism
is too important and we can not conclude if the situation is safe. On the other hand
on Figure 1b the situation is clearly safe, but this result was longer to get.

(a) False
alarm

(b) No false
alarm

(c) Adapta-
tive approxi-
mation

Figure 1: Outer approximations of Y next to an unsafe area

The idea presented in this paper is then to use a low resolution everywhere, and
to refine the approximation where needed. This is depicted on Figure 1c where two
different resolutions are used to get an adaptative parallelepipedic enclosure of Y.
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Main results

We propose an algorithm to generate an adaptative outer approximation of the image
of a set. This algorithm is n-dimensionnal, and allows to verify if the image set
satisfies a given property (or set of properties). Applications in three dimensions will
be displayed.

Figure 2a shows an application where we want to assert that a robotic arm will
not collide in a cylinder [2] [3]. The arm is composed of three segments (red, green
and blue) and we want to compute its workspace, i.e. the possible positions of the
orange effector. The position of the effector can be computed directly from the three
angles of the arm : one between the black base and the red segment, one between
the red and green segments and one between the green and blue segments.

Figures 2b and 2c show the projected workspace of the robotic arm in green, with
the cylinder in orange. We can see that thanks to our adaptative slicing we are able
to assert that the arm will not collide with the cylinder.

(a) Robotic arm in a cylinder (b) Workspace projected in
the (z2, z3) plane

(c) Workspace projected in
the (z1, z2) plane

Figure 2: Constraints validated thanks to an adaptative slicing
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Parallelepipedic Approximation

Let us consider a function 𝐟: ℝ𝑚 → ℝ𝑛 , 𝑚 ≤ 𝑛 . A

parallelepiped inclusion function of f is a function

𝐟 :
𝕀ℝ𝑚 → ℙℝ𝑛

𝐱 → 𝐟 𝐱

For a given box 𝐱 , this function returns a parallelepiped

enclosing 𝐟 𝐱 .

Parallelepipeds are efficient wrappers to enclose a set.

They are a compromise between the simplicity of boxes

and the precision of zonotopes.

Reachable set computation

This method can be used to compute the reachable set of

a dynamical system of the form ሶ𝐱 = 𝐟(𝐱, 𝐮).The state of the

system is 𝐱 and 𝐮 is a known input.

As an example we will consider that the system is a robot

defined by its position and its heading.

Need for adaptivity

As any set based method, the use of parallelepipeds to

enclose a set gives a pessimistic result. If the final

objective is to assert that a constraint is satisfied, this

pessimism can create an ambiguity.

Direct image computation

This method can be used to compute the direct image of a

set by a function. For example, the computation of the

workspace of a robotic arm.

Here we consider the set of possible initial states for the

robot. The image set contains all the possible states of the

robot after a given time. We want to assert that the robot

reaches the green area after a specific duration.

Use cases

  

Adaptative parallelepipedic approximation 
of the image of a set by a nonlinear function

Ambiguity No ambiguity

Using a high number of parallelepipeds everywhere is

expensive time-wise and computational-wise. The idea

presented here is then to use a low resolution everywhere,

and to refine only the areas where it is needed. The result

is an adaptative parallelepipedic approximation.

Adaptative

In this example we consider the set of the possible angles

for each joint. The image set contains all the achievable

positions for the effector. The constraint is that we want to

avoid collisions between the effector and the grey cylinder

(in red in both planes below).

3D workspace 𝑧1, 𝑧2 plane 𝑧2, 𝑧3 plane
𝑥2, 𝑥3 plane3D reachable set

SCAN 2025, Oldenburg, Germany
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Introduction

The field of AI is evolving daily, and handling data center-scale AI workflows with
high throughput is essential. Modern architectures feature high-performance and
power-efficient units (e.g., NVIDIA Tensor Cores, AMD Matrix Cores, and Google
Cloud Tensor Processing Units) to process low-precision matrix multiplication in AI
workflows rapidly. However, the performance of single- and double-precision com-
putations required in scientific computing has stagnated. The key to reconcile con-
temporary hardware advancements with the requirements of scientific computing is
utilizing low-precision units. We present methods for emulating single- and double-
precision general matrix-matrix multiplication (SGEMM and DGEMM) using INT8
matrix engines.

Previous Study

The authors proposed Ozaki scheme II [1], emulation of high-precision matrix multi-
plication based on the Chinese Remainder Theorem. For N ∈ N, we let p1, . . . , pN ∈
N≥2 be pairwise coprime integers and q1, . . . , qN ∈ N be modular multiplicative in-
verses of

∏
j ̸=i pj (i.e.,

∏
j ̸=i pj · qi ≡ 1 mod pi). For integer matrices A′ ∈ Zm×k and

B′ ∈ Zk×n, the approximation of a matrix product C ′ ≈ A′B′ can be obtained as
follows:

C ′ ← mod

(
N∑

i=1

mod(A′′B′′, pi) ·
∏

j ̸=i

pj · qi,
∏

j ̸=i

pj

)
, (1)

where A′′ := mod(A′, pi), B
′′ := mod(B′, pi), and mod(x, y) is the remainder of

x/y. Note that this accumulation must be computed with high precision. For floating-
point matrices A ∈ Rm×k and B ∈ Rk×n, we first apply scaling and chopping to obtain
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A′ and B′. We then compute C ′ ≈ A′B′, and subsequently apply inverse scaling to
obtain an approximation of AB.

Main results

We chose the moduli pi such that the remainders fit within the INT8 range, enabling
emulation of the matrix multiplications A′′B′′ in (1) using INT8 matrix engines. The
performance of matrix multiplication using INT8 matrix engines is overwhelmingly
faster than that of FP64, FP32, and others. Therefore, even if the computational cost
of FP64, FP32, and similar operations is much lower than that of matrix multipli-
cation, their execution time remains non-negligible. Consequently, if Ozaki scheme
II implemented in a straightforward manner, it can become a performance bottle-
neck. Hence, in emulation using INT8 matrix engines, it is crucial to skillfully apply
techniques such as table lookups and error-free computations to avoid division and
high-precision computations.

Numerical experiments to evaluate the accuracy, throughput performance, and
power efficiency were conducted on an NVIDIA GH200 Grace Hopper Superchip, an
NVIDIA Ampere A100 SXM4 GPU, and an NVIDIA GeForce RTX 5080 Blackwell
GPU. On GH200, the proposed DGEMM emulation achieved a 1.3x speedup and a
43% improvement in power efficiency compared to native DGEMM. The proposed
SGEMM emulation achieved a 3.4x speedup and a 173% improvement in power effi-
ciency compared to native SGEMM. Numerical results obtained on A100 and RTX
5080 also showed high performance and power efficiency.

A deterministic error analysis of the emulation was also conducted. In the pre-
sentation, we will discuss the validity of this error analysis by comparing it with
numerical results. Error analysis of matrix multiplication has been widely used to
verify the results of various problems in numerical linear algebra. Likewise, the pro-
posed emulation and its error analysis can be applied to such verification methods.
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Interval analysis [9] is a valuable tool for addressing a wide range of applications
that require reliable methods for such tasks as, for example, root-finding, global op-
timization, or parameter estimation. Despite its versatility in deterministic handling
of bounded uncertainty, the adoption of interval analysis in computer-aided problem-
solving has been constrained by computational overhead and the possibility of too
conservative estimations of the result domains. A promising approach to alleviate
this is the use of parallelization on specialized hardware, such as GPUs. Leveraging
GPUs can potentially enable computations that were previously considered infeasible.

Interval branch-and-bound (IBB) methods, which systematically reduce an initial
search domain, are particularly well-suited for estimation problems involving bounded
uncertainty. IBB algorithms rely on iterative subdivision strategies to isolate regions
of interest. Although this process can be implemented efficiently in a sequential
manner, it has potential for parallelization on GPUs. Naive implementations often
conflict with the GPU’s massively parallel architecture in practice, leading to subopti-
mal performance and therefore undermining the advantages of hardware acceleration.
While GPU-based IBB methods have been addressed in the literature, the employed
parallelization strategies are not unified and vary widely from brute-force techniques
to more structured, vectorized implementations [3, 4, 10].

Recently, we have tested our own versions of GPU interval optimization methods
based on brute-force techniques in the context of communication and energy sys-
tems [1, 2]. We applied monotonicity, convexity and SIVIA-like [7, 8] tests in parallel
on a multi-dimensional, uniform grid in order to eliminate boxes from the search that
cannot contain a solution. For automatic differentiation, we ported the widely used
FADBAD++ to the CUDA framework, with interval support provided by a modified
version of the CUDA interval library [5]. This approach proved to be faster than
comparable CPU-based ones. However, our brute-force method on the GPU does not
scale well due to its memory-intensive processing of redundant boxes. Depending on
the structure and size of a problem, different forms of parallelized space subdivision
can accelerate the optimization process even further.

In this contribution, we investigate and compare several ways to parallelize sub-
division methods on the example of the SIVIA algorithm. Our goal is to identify
strategies that maximize utilization of GPUs’ computational capabilities by bench-
marking throughput performance in a series of standard examples. We also introduce
a new GPU interface for the Boost interval library to enable a seamless integration
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of GPUs into existing CPU-based code. Additionally, we assess our findings using a
close-to-life application.

Finally, we consider the implications of GPU acceleration with respect to power
consumption. Although GPUs offer substantial performance improvements with each
new generation, they also require significant amounts of energy. To quantify our
energy-related costs, we not only benchmark throughput performance but also per-
form detailed energy measurements for both CPU-only and GPU-accelerated interval
implementations. Unlike our previous studies [1, 6], which relied on software-based
estimates, this work presents our results using hardware-based measurements, offer-
ing a more accurate assessment of the trade-offs between performance and power
consumption in parallelized IBB methods.
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Motivation
Classical interval algorithms for problems such as root-finding, global optimization and parameter estimation iteratively apply branching and bounding/pruning on an initial
search domain until a satisfactory result is reached. These types of algorithms are often restricted to problems of low dimensions due to their dependence on space
subdivision. As a result of the growing interest in GPU applications for scientific computing in general, the topic of GPU-accelerated interval methods has also gained more
attention in recent years. We explore ways to enhance the speed of interval branch-and-bound type methods using GPUs to scale them beyond their current limits. Given
today’s growing demand for computing power, we must evaluate accelerated algorithms based not only on their speed, but also on their energy requirements.

GPU Computing

Key considerations:
n Fit tasks to thread block model
n Reduce main memory accesses
n Maximize occupancy

å Avoid idle threads
n Kernels operate in warps
(groups of 32 threads)

Thread Block Model

Grid Block

Thread

Warp

Parallelization of Branching Algorithms
Two main categories of parallelization for tree-like procedures:

Node Level
Work distribution
across a coarse grid

(subtasks)

Leaf Level
Subdivision of a

problem into fine grid
(brute-force)

General search space reduction scheme used previously [1, 2, 3]:

1 2

GPU

3 4

Drawbacks: High memory saturation; scalability limited by problem dimensions
Improvement: Unify steps 1 and 2 to maximize computational efficiency

if f ([x ]) ⊂ [y]: keep [x ]

elif f ([x ])∩ [y] = ∅: reject [x ]

else: bisect [x ]

SIVIA (Set Inversion Via Interval Analysis [5]): good example for
branching-based interval algorithms suitable for parallelization

+ We consider 3 basic parallelized versions, as well as combinations thereof:

NSIVIA Multiple (independent) instances of SIVIA in parallel over a coarse grid
PSIVIA Massively parallel, one-time evaluation of single boxes over a fine grid
VSIVIA Vectorized »bisect – evaluate – partition« cycle [4]

Boost.Interval: New GPU Mode
To streamline development, we added GPU support to the Boost.Interval library:

ä Direct rounding mode for GPU arithmetic ß fast operations
ä Extensive use of generic programming ß same source code for CPU and GPU
ä First cross-platform, GPU-compatible interval library for CUDA C++

/* Classic interval type definition */
typedef interval<double, policies<save_state<rounded_transc_std<double> >,

checking_base<double> > > host_interval;

/* Interval data type definition for the GPU */
typedef interval<double, policies<save_state_nothing<rounded_transc_gpu<double> >,

checking_base_gpu<double> > > device_interval;

/* Cross-platform interval type (without bounds checking) */
typedef interval<double, policies<save_state_nothing<rounded_transc_exact<double> >,

checking_base<double> > > cross_interval;

Github https://github.com/lorenzgillner/boost-interval

Performance Benchmarks

Benchmarks: SIVIA of the Griewank test function

g(x) = 1

K

n∑

i=1
x2

i −
n∏

i
cos

(
xi√
n

)
+ 1, K = 4000

n Optimization of the method itself
å All results are qualitative the same

n 16 variations of SIVIA implementations
n Selection of parallelization frameworks

å OpenMP, OpenMPI, TBB and CUDA
n Tests on consumer grade hardware

Power Profiling
ä Per-component measurements of power consumption during benchmarks
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ä Choice of parallelization method depends on the problem dimensions
ä Brute-force methods are best suited for small problems
ä A-priori subdivision combined with vectorization yields best time to solution
ä 675 speedup on a four-dimensional problem compared to traditional version

å Reduction of energy requirements by 90%
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As the need for trustworthy simulations grows, reliable computations are be-

coming increasingly important in such varied areas as robotics, medical imagining,
computational biology, and many others. In such applications, accurately propagat-
ing bounded epistemic uncertainty is crucial for achieving dependable results in both
static and dynamic systems. Beyond simulation, parameter identification under un-
certain conditions plays a vital role in solving real-world engineering and scientific
problems. The demand for reliability is offset by an equally important requirement
of efficiency, often resulting in a compromise that prioritizes one over the other.

Interval methods [3] have emerged as a valuable tool in the context of reliability,
since they inherently propagate bounded uncertainty while fulfilling their primary
purpose of result verification. This kind of verification involves providing a guaranteed
enclosure of the exact result, despite potential rounding, discretization, or method
errors that may affect computer-based calculations.

An important step in the verification of higher-level numerical methods, such as
those used for solving differential equations or global optimization, is the computation
of exact partial derivatives of the underlying functions. While users can provide
the code for derivatives manually or with the aid of a computer algebra system, it
is more desirable to compute derivatives automatically within the normal program
code. Algorithmic differentiation [2] offers a well-established approach to achieve this
goal. Over the past three decades, numerous tools have been developed to support its
implementation, primarily targeting serial execution on the CPU. While algorithmic
differentiation simplifies the process from the point of view of human effort, it must
not necessarily result in improved overall runtime performance of a simulation.

Parallelization has been successfully employed within the high-performance com-
puting framework to accelerate traditional result verification methods. The use of
graphic processing units (GPUs) can be particularly beneficial, owing to their high
computational throughput and relatively low cost. Nevertheless, the GPU archi-
tecture diverges significantly from its CPU counterpart, necessitating innovative ap-
proaches to porting CPU code to the GPU in order to fully exploit the GPUs’ capa-
bilities.
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This poses a particular challenge for algorithmic differentiation, as only a few
GPU implementations currently exist1, and none are designed to support interval
data types. To address this gap, we have recently ported the popular template-based
CPU tool FADBAD++ to the GPU and implemented a differentiation-algebra-based
approach for the first and second derivative2. Although FADBAD++ has the big
advantage of enabling the computation of derivatives of any order on the CPU, a
naive porting to the GPU proves to be inefficient [1].

In this contribution, we initiate a systematic approach to optimizing the imple-
mentation of algorithmic differentiation on the GPU. By analyzing the performance
characteristics of various GPU architectures, we aim to pinpoint the primary bot-
tlenecks and identify opportunities for improvement. To this end, we examine the
computational efficiency of a classic global optimization problem using the Griewank
function, alongside a real-world case from the field of multiple-input multiple-output
(MIMO) systems, a key technology in broadband wireless communications.
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