A Web Interface for Petri Nets with Transits
and Petri Games *

Manuel Gieseking! ™)@, Jesko Hecking-Harbusch?®, and Ann Yanich’

! University of Oldenburg, Oldenburg, Germany
{gieseking,ann.yanich}@informatik.uni-oldenburg.de
2 CISPA Helmholtz Center for Information Security, Saarbriicken, Germany
jesko.hecking-harbusch@cispa.de

Abstract. Developing algorithms for distributed systems is an error-
prone task. Formal models like Petri nets with transits and Petri games
can prevent errors when developing such algorithms. Petri nets with tran-
sits allow us to follow the data flow between components in a distributed
system. They can be model checked against specifications in LTL on both
the local data flow and the global behavior. Petri games allow the synthe-
sis of local controllers for distributed systems from safety specifications.
Modeling problems in these formalisms requires defining extended Petri
nets which can be cumbersome when performed textually.

In this paper, we present a web interface' that allows an intuitive, visual
definition of Petri nets with transits and Petri games. The corresponding
model checking and synthesis problems are solved directly on a server.
In the interface, implementations, counterexamples, and all intermediate
steps can be analyzed and simulated. Stepwise simulations and interac-
tive state space generation support the user in detecting modeling errors.

1 Introduction

Distributed systems consist of several individual components. Each component
has incomplete information about the other components. Asynchronous dis-
tributed systems have no fixed rate at which components progress but rather each
component progresses at its individual rate between synchronizations with other
components. Implementing correct algorithms for asynchronous distributed sys-
tems is difficult because they have to both work with the incomplete information
of the components and for every possible scheduling between the components.
Petri nets [22,21] are a natural model for asynchronous distributed systems.
Tokens represent components and transitions with more than one token corre-
spond to synchronizations between the components. Petri nets with transits [9)
extend Petri nets with a transit relation to model the data flow in asynchronous

* This work has been supported by the German Research Foundation (DFG) through
Grant Petri Games (392735815) and through the Collaborative Research Center
“Foundations of Perspicuous Software Systems” (TRR 248, 389792660), and by the
European Research Council (ERC) through Grant OSARES (683300).

! The web interface is deployed at http://adam.informatik.uni-oldenburg.de.

http://orcid.org/0000-0001-9073-3002
http://orcid.org/0000-0003-2076-617X
http://orcid.org/0000-0002-0170-0012
http://adam.informatik.uni-oldenburg.de

2 M. Gieseking et al.

distributed systems. Flow-LTL [9] is a specification language for Petri nets with
transits and allows us to specify linear properties on both the global and the
local view of the system. In particular, it is possible to globally select desired
runs of the system with LTL (e.g., only fair and maximal runs) and check the
local data flow of only those runs again with LTL. A model checker for Petri
nets with transits against Flow-LTL is implemented in the tool ADAMMC [10].
Petri games [14] define the synthesis of asynchronous distributed systems
based on Petri nets and causal memory. With causal memory, players exchange
their entire causal past only upon synchronization. Without synchronization,
players have no information of each other. For safety winning conditions, the
synthesis algorithm for Petri games with a bounded number of controllable com-
ponents and one uncontrollable component is implemented in ADAMSYNT [12]2.
Both tools are command-line tools lacking visual support to model Petri nets
with transits or Petri games and the possibility to simulate or interactively ex-
plore implementations, counterexamples, and parts of the created state space.
In this paper, we present a web interface® for model checking asynchronous
distributed systems with data flows and for the synthesis of asynchronous dis-
tributed systems with causal memory from safety specification. The web inter-
face offers an input for Petri nets with transits and Petri games where the user
interactively creates places, transitions, and their connections with a few inputs.
As a back-end, the algorithms of ADAMMC are used to model check Petri
nets with transits against a given Flow-LTL formula as specification. Internally,
the problem is reduced to the model checking problem of Petri nets against
LTL. Both, the input Petri net with transits and the constructed Petri net can
be visualized and simulated in the web interface. For a positive result, the web
interface lets the user follow the control flow of the combined system and the data
flow of the components. For a negative result, the web interface simulates the
counterexample with a visual separation of the global and each local behavior.
The algorithms of ADAMSYNT solve the given Petri game with safety specifi-
cation. Internally, the problem is reduced to solving a finite two-player game with
complete information. For a positive result, a winning strategy for the Petri game
and the two-player game can be visualized and the former can be simulated. For
a negative result, the web interface lets the user interactively construct strategies
of the two-player game and highlights why they violate the specification. These
new intuitive construction methods, interactive features, and visualizations are
of great impact when developing asynchronous distributed systems.

2 Web Interface for Petri Nets with Transits

The web interface can model check Petri nets with transits against Flow-LTL.
We use an example from software-defined networks to showcase the workflow.

2 ADAMSYNT was previously called ADpAM. From now on, ADAMMC and
ADAMSYNT are combined in the tool ADAM (https://github.com/adamtool/adam).
3 The web interface is open source (https://github.com/adamtool/webinterface) and
a corresponding artifact to set it all up locally in a virtual machine is available [16].

https://github.com/adamtool/adam#readme
https://github.com/adamtool/webinterface#readme

A Web Interface for Petri Nets with Transits and Petri Games 3

File~ View~ Check Reduction v AdamWEB — Model Checker ? About GitHub X
MODEL CHECKING
PETRINETWITHTRANSITS SIMULATOR APT EDITOR RESULT FOR'(GUO>A X
F)

Condltion e
LTL or Flow-LTL ~ iflg (Gu0->AFs2) a8 Model checking result

Formula: (G u0 -> AF s2)
& Collapse Result: Not satisfied
Counter Example (Input Petri Net with Transits) ~

{u0,50,51,52,53,54,55,a3,a4,a5} [ingress>
{u0,50,51,52,53,54,55,a3,a4,a5} [t3>
{u0,50,51,52,53,54,55,a3,a4,a5} [t4>
{u0,50,51,52,83,54,55,a3,a4,a5} [t5>
{u0,50,51,52,53,54,55,a3,a4,a5} [ingress>
{u0,50,51,52,53,54,55,a3,a4,a5} [t4>
{u0,50,51,52,53,54,55,a3,a4,a5} [t4>
{u0,50,51,52,83,54,55,a3,a4,a5} [t3>
{u0,50,51,52,53,54,55,a3,a4,a5} [t5>
{u0,50,51,52,53,54,55,a3,a4,a5} [ingress>
{u0,50,51,52,53,54,55,a3,a4,a5} [ingress> ...

* Draw Flow

[]

7/

/' Draw Transit
+ Add Place
+

Add Transition

() Invert selection

= Delete selected nodes
LOAD INTO SIMULATOR

++ More

VIEW PETRI NET WITH TRANSITS

Fig. 1. Screenshot from the web interface for the model checking workflow.

Workflow for Petri Nets With Transits One application domain for Petri
nets with transits are software-defined networks (SDNs) [20,4]. The nodes of
the network are switches which forward packets along the edges of the net-
work according to the routing configuration. Packets enter the network at ingress
switches and leave it at egress switches. SDNs separate the packet forwarding
process, called the data plane, from the routing process, called the control plane.
Concurrent updates to the routing configuration are difficult to get right [15].

The separation of data and control plane and updates to the routing con-
figuration can be encoded into Petri nets with transits [9]. Using this encod-
ing, we demonstrate the workflow of the web interface for model checking an
asynchronous distributed system with data flows. The packets of the SDN are
modeled by the data flow in the Petri net with transits. The data flow relation
as an extension from Petri nets to Petri nets with transits is depicted as colored
and labeled arcs. In Fig. 1, the web interface presents the resulting Petri net
with transits /. First, we use the tools on the left to create for each switch a
place si with ¢ € {0,...,5} and add a token (cf. outer parts of /). Then, we
create transitions for the connections between the switches and for the origin of
packets in the SDN (cf. transition ingress in the top-left corner) and link them
with flows in both directions. Additionally, we create local transits between the
switches corresponding to the forwarding of packets. They are displayed in light
blue and red and are identified by the letters. This constitutes the data plane.

Next, we define the control plane, i.e., which forwarding is activated. Each
transition to forward packets is connected to a place ai with ¢ € {0, ...,5} which
has a token when the forwarding is configured initially (cf. places a3, a4, and a5)
and no token otherwise (cf. places a0, al, and a2). For the concurrent update,
we create places ui with ¢ € {0,...,7} and transitions ti with ¢ € {6,...,11}
with corresponding flows (cf. inner parts of /).

4 M. Gieseking et al.

Transitions for the forwarding are set as weak fair, i.e., whenever a transition
is infinitely long enabled in a run, it also has to fire infinitely often, indicated by
the purple color of the outer transitions. Transitions for the update do not require
fairness assumptions. A satisfied Flow-LTL formula is A F' s5 specifying that all
packets eventually reach switch s5. An unsatisfied formula is (Gu0 = A F s2)
requiring for runs, where the update is never executed, that all packets are taking
the lower-left route. The fairness assumptions and a maximality assumption, i.e.,
whenever some transition can fire in a run some transition fires, are automatically
added to the formula. In the screenshot, a counterexample for the unsatisfied
formula is displayed on the right. The first packet takes the upper-right route
via transitions t3, t4, and t5 and the update never starts.

Features for Petri Nets with Transits. ADAMMC [10] is a command-line
model checking tool for Petri nets with transits and Flow-LTL [9]. The model
checking problem of Petri nets with transits against Flow-LTL is solved by a re-
duction to Petri nets and LTL. The web interface allows displaying and arranging
the nodes of the Petri net from the reduction and the input Petri net with tran-
sits. Automatic layout techniques are applied to avoid the overlapping of nodes.
A physics control, which modifies the repulsion, link, and gravity strength of
nodes, can be used to minimize the overlapping of edges. Heuristics generate
coordinates for the constructed Petri net by using the coordinates of the input
Petri net with transits to obtain a similar layout of corresponding parts.

For a positive result, the web interface allows visualizing the data flow trees
for given firing sequences of the nets. For a negative result, the counterexample
can be simulated both in the Petri net with transits and in the Petri net from
the reduction. The witness of the counterexample for each flow subformula and
the run violating the global behavior can be displayed by the web interface. This
functionality is helpful when developing an encoding of a problem into Petri net
with transits to ensure that a counterexample is not an error in the encoding.
The constructed Petri net can be exported into a standard format for Petri net
model checking (PNML) and the constructed LTL formula can be displayed.

3 Web Interface for Petri Games

The web interface can synthesize local controllers from safety specifications. The
workflow is showcased for a distributed alarm system given as a Petri game.

‘Workflow for Petri Games We demonstrate the workflow of the web interface
for the synthesis of asynchronous distributed systems with causal memory from
safety specifications. Petri games separate the places of an underlying Petri net
into system places and environment places. Tokens on system places are system
players and tokens on environment places are environment players. Each player
has causal memory: only upon synchronization with other players, they exchange
their entire causal past. For safety specifications, the system players have to avoid
that a bad place is reached for all behaviors of the environment players.

A Web Interface for Petri Nets with Transits and Petri Games 5

File ~ View v Solve Analyze v AdamWEB — Synthesizer ? About GitHub X

PETRIGAME SIMULATOR APTEDITOR WINNING STRATEGY X

Simulation History
0

& Collapse

3
=
Delete Oé

Draw Flow

Add System Place Er D Ij i .
P
Add Environment Place U tj " o pis
7 7 .
kS

Add Transition

<start>

q@ O« {1

t

[N B
@ O L,

+ + + N\, m

() Invert selection

= Delete selected nodes

Lr

¢
) kel
T ¢ .

BE]ED

Fig. 2. Screenshot from the web interface for the synthesis workflow.

We want to obtain two local controllers of a distributed alarm system that
should indicate the location of a burglary at both controllers. In Fig. 2, the web
interface presents the resulting Petri game on the left and the winning strategy
for the alarm system on the right. The burglar is modeled by an environment
player and each component of the distributed alarm system by a system player.
Environment players are on white places and system players on gray ones. We
create five environment places €0, el, €2, eL, and eR. The place e0 has a token,
el and e2 serve for the decision to burgle a location, and eL and eR for actually
burgling the location. Each component = € {p,q} of the alarm system has one
system place 0 with a token, two system places 1 and x2 to detect a burglary
and inform the other component, and two system places zL and zR to sound
an alarm with the position of a burglary. We create rows of transitions for the
environment player deciding where to burgle (first row), for the components de-
tecting a burglary (second row), for the communication between the components
(third row), and for sounding the alarm at each location (fourth row).

At last, we use transitions fai with i € {0,...,3} and frj with j € {0,...,7}
connected to the bad place bad to define that the implementation of the dis-
tributed alarm system should avoid false alarms and false reports. A false alarm
occurs if the burglar did not burgle any location but an alarm occurred, i.e., in
every pair of places {e0} x {pL, pR, qL, gR}. A false report occurs if a burglary
happened at a location but a component of the alarm system indicates a bur-
glary at the other location, i.e., in every pair of places {el, eL} x {pR, ¢R} and
{€2,eR} x {pL, qL}. We add transitions and flows to bad for these cases.

The web interface finds a winning strategy (depicted on the right in Fig. 2)
for the Petri game described above. Each component locally monitors its location
(t2, t3) and simultaneously waits for information about a burglary at the other
location (¢4, t5). When a burglary is detected at the location of the component

6 M. Gieseking et al.

then it first informs the other component (¢4, t5) and then outputs an alarm for
the current location (¢7, t8). When a component is informed about a burglary
at the other location, it outputs an alarm for the other location (¢6, t9).

Features for Petri Games ADAMSYNT [12] is a command-line tool for Petri
games [14]. The synthesis problem for Petri games with a bounded number of
system players, one environment player, and a safety objective is reduced to the
synthesis problem for two-player games. A winning strategy in the two-player
game is translated into a winning strategy for the Petri game. Both can be vi-
sualized in the web interface. Here, the web interface provides the same features
for visualizing, manipulating, and automatically laying out the elements as for
model checking. It uses the order of nodes of the Petri game to heuristically pro-
vide a positioning of the strategy and allows simulating runs of the strategy. The
winning strategy of the two-player game provides an additional view on the im-
plementation to check if it is not bogus due to a forgotten case in the Petri game
or specification. For an unrealizable synthesis problem, the web interface allows
analyzing the underlying two-player game via a stepwise creation of strategies.
This guides the user towards changes to make the problem realizable.

4 Implementation Details

The server is implemented using the Sparkjava micro-framework [23] for incom-
ing HTTP and WebSocket connections. The client is a single-page application
written in Javascript using Vue.js [25], D3 [5], and the Vuetify component li-
brary [26]. We constructed libraries out of the tools ADAMMC and ADAMSYNT
and implemented one interface handling both libraries. Common features like the
physics control of nodes share the same implementation. All components of the
libraries and the web interface [2] are open source and available on GitHub [1].

5 Conclusion

We presented a web interface for two tools: ADAMMC, a model checker for data
flows in asynchronous distributed systems represented by Petri nets with transits,
and ADAMSYNT, a synthesis tool for local controllers from safety specifications
in asynchronous distributed systems with causal memory represented by Petri
games. The web interface makes the modeling and debugging of Petri nets with
transits and Petri games user-friendly as it presents visual representations of
the input, all intermediate steps, and the output of the tools. The interactive
features are a great assistance for correctly modeling distributed systems.

We plan to extend the web interface and tool support to model checking
Petri nets with transits against Flow-CTL* [11], to other classes of Petri games
with a decidable synthesis problem [13,3], to the bounded synthesis approach for
Petri games [7,8,19,18], and to high-level Petri games [17]. As our web interface
is open source and easy to extend, we also plan to connect it to other tools for
Petri nets like APT [24], LoLA [27], or TAPAAL [6].

A Web Interface for Petri Nets with Transits and Petri Games 7

References

1. ApAM: https://github.com/adamtool/ (2020)

2. ADAMWERB: https://github.com/adamtool/webinterface (2020)

3. Beutner, R., Finkbeiner, B., Hecking-Harbusch, J.: Translating asynchronous

10.

11.

12.

13.

14.

games for distributed synthesis. In: 30th International Conference on Concurrency
Theory, CONCUR. LIPIcs, vol. 140, pp. 26:1-26:16. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2019), https://doi.org/10.4230/LIPIcs. CONCUR.2019.26
Casado, M., Foster, N., Guha, A.: Abstractions for software-defined networks. Com-
mun. ACM 57(10), 86-95 (2014), https://doi.org/10.1145/2661061.2661063

D3: https://d3js.org/ (2020)

David, A., Jacobsen, L., Jacobsen, M., Jgrgensen, K.Y., Mgller, M.H., Srba, J.:
TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In:
Tools and Algorithms for the Construction and Analysis of Systems - 18th Inter-
national Conference, TACAS. Lecture Notes in Computer Science, vol. 7214, pp.
492-497. Springer (2012), https://doi.org/10.1007/978-3-642-28756-5_36
Finkbeiner, B.: Bounded synthesis for Petri games. In: Correct System Design
- Symposium in Honor of Ernst-Riidiger Olderog on the Occasion of His 60th
Birthday. Lecture Notes in Computer Science, vol. 9360, pp. 223-237. Springer
(2015), https://doi.org/10.1007/978-3-319-23506-6-15

Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.: Symbolic vs.
bounded synthesis for Petri games. In: Sixth Workshop on Synthesis, SYNTQCAV.
EPTCS, vol. 260, pp. 23-43 (2017), https://doi.org/10.4204/EPTCS.260.5
Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.: Model checking
data flows in concurrent network updates. In: Automated Technology for Veri-
fication and Analysis - 17th International Symposium, ATVA. Lecture Notes in
Computer Science, vol. 11781, pp. 515-533. Springer (2019), https://doi.org/10.
1007/978-3-030-31784-3_30

Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.: AdamMC:
A model checker for Petri nets with transits against Flow-LTL. In: Computer
Aided Verification - 32nd International Conference, CAV. Lecture Notes in Com-
puter Science, vol. 12225, pp. 64-76. Springer (2020), https://doi.org/10.1007/
978-3-030-53291-8_5

Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.: Model checking
branching properties on Petri nets with transits. In: Automated Technology for
Verification and Analysis - 18th International Symposium, ATVA. Lecture Notes
in Computer Science, vol. 12302, pp. 394-410. Springer (2020), https://doi.org/10.
1007/978-3-030-59152-6_22

Finkbeiner, B., Gieseking, M., Olderog, E.: Adam: Causality-based synthesis of
distributed systems. In: Computer Aided Verification - 27th International Confer-
ence, CAV. Lecture Notes in Computer Science, vol. 9206, pp. 433-439. Springer
(2015), https://doi.org/10.1007/978-3-319-21690-4_25

Finkbeiner, B., Golz, P.: Synthesis in distributed environments. In: 37th TARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS. LIPIcs, vol. 93, pp. 28:1-28:14. Schloss Dagstuhl - Leibniz-
Zentrum fir Informatik (2017), https://doi.org/10.4230/LIPIcs. FSTTCS.2017.28
Finkbeiner, B., Olderog, E.: Petri games: Synthesis of distributed systems with
causal memory. Inf. Comput. 253, 181-203 (2017), https://doi.org/10.1016/j.ic.
2016.07.006

https://github.com/adamtool/
https://github.com/adamtool/webinterface#readme
https://doi.org/10.4230/LIPIcs.CONCUR.2019.26
https://doi.org/10.1145/2661061.2661063
https://d3js.org/
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-319-23506-6_15
https://doi.org/10.4204/EPTCS.260.5
https://doi.org/10.1007/978-3-030-31784-3_30
https://doi.org/10.1007/978-3-030-31784-3_30
https://doi.org/10.1007/978-3-030-53291-8_5
https://doi.org/10.1007/978-3-030-53291-8_5
https://doi.org/10.1007/978-3-030-59152-6_22
https://doi.org/10.1007/978-3-030-59152-6_22
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.28
https://doi.org/10.1016/j.ic.2016.07.006
https://doi.org/10.1016/j.ic.2016.07.006

8

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.
26.
27.

M. Gieseking et al.

Forster, K., Mahajan, R., Wattenhofer, R.: Consistent updates in software de-
fined networks: On dependencies, loop freedom, and blackholes. In: IFTP Network-
ing Conference. pp. 1-9. IEEE Computer Society (2016), https://doi.org/10.1109/
IFIPNetworking.2016.7497232

Gieseking, M., Hecking-Harbusch, J., Yanich, A..: AdamWEB: A
Web Interface for Petri Nets with Transits and Petri Games (2020).
https://doi.org/10.6084/m9.figshare.13089800

Gieseking, M., Olderog, E., Wiirdemann, N.: Solving high-level Petri games. Acta
Informatica 57(3-5), 591-626 (2020), https://doi.org/10.1007/s00236-020-00368-5
Hecking-Harbusch, J., Metzger, N.O.: Efficient trace encodings of bounded syn-
thesis for asynchronous distributed systems. In: Automated Technology for Ver-
ification and Analysis - 17th International Symposium, ATVA. Lecture Notes in
Computer Science, vol. 11781, pp. 369-386. Springer (2019), https://doi.org/10.
1007/978-3-030-31784-3_22

Hecking-Harbusch, J., Tentrup, L.: Solving QBF by abstraction. In: Ninth Inter-
national Symposium on Games, Automata, Logics, and Formal Verification, Gan-
dALF. EPTCS, vol. 277, pp. 88-102 (2018), https://doi.org/10.4204/EPTCS.277.7
McKeown, N., Anderson, T.E., Balakrishnan, H., Parulkar, G.M., Peterson, L.L.,
Rexford, J., Shenker, S., Turner, J.S.: Openflow: enabling innovation in campus
networks. Comput. Commun. Rev. 38(2), 69-74 (2008), https://doi.org/10.1145/
1355734.1355746

Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and do-
mains, part I. Theor. Comput. Sci. 13, 85-108 (1981), https://doi.org/10.1016/
0304-3975(81)90112-2

Reisig, W.: Petri Nets: An Introduction, EATCS Monographs on Theoretical Com-
puter Science, vol. 4. Springer (1985), https://doi.org/10.1007/978-3-642-69968-9
Sparkjava: http://sparkjava.com/ (2020)

University of Oldenburg: APT — Analyse von Petri-Netzen und Transitionssyste-
men. https://github.com/CvO-Theory/apt (2012)

Vue.js: https://vuejs.org/ (2020)

Vuetify: https://vuetifyjs.com/ (2020)

Wolf, K.: Petri net model checking with LoLLA 2. In: Application and Theory
of Petri Nets and Concurrency - 39th International Conference, PETRI NETS.
Lecture Notes in Computer Science, vol. 10877, pp. 351-362. Springer (2018), https:
//doi.org/10.1007/978-3-319-91268-4_18

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1109/IFIPNetworking.2016.7497232
https://doi.org/10.1109/IFIPNetworking.2016.7497232
https://doi.org/10.6084/m9.figshare.13089800
https://doi.org/10.1007/s00236-020-00368-5
https://doi.org/10.1007/978-3-030-31784-3_22
https://doi.org/10.1007/978-3-030-31784-3_22
https://doi.org/10.4204/EPTCS.277.7
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1007/978-3-642-69968-9
http://sparkjava.com/
https://github.com/CvO-Theory/apt
https://vuejs.org/
https://vuetifyjs.com/
https://doi.org/10.1007/978-3-319-91268-4_18
https://doi.org/10.1007/978-3-319-91268-4_18
https://creativecommons.org/licenses/by/4.0/

	A Web Interface for Petri Nets with Transits and Petri Games

