Errata (October, 2009)

found in "Real-Time Systems" (E.-R. Olderog and H. Dierks)

Error			
Wrong: Crtl (sev Correct: Ctrl	ven times)		
Wrong:			
	$FA^2(P)$	\Leftrightarrow	$ \begin{bmatrix} \neg & \neg P \end{bmatrix} \lor \begin{bmatrix} \neg P \end{bmatrix} \\ \begin{bmatrix} P \end{bmatrix}; \begin{bmatrix} \neg P \end{bmatrix} \lor \begin{bmatrix} \neg P \end{bmatrix}; \begin{bmatrix} P \end{bmatrix}; $
	$FA^3(P)$	\iff	$ \begin{bmatrix} \neg & \lor & \neg P \end{bmatrix} \\ \begin{bmatrix} P \end{bmatrix} & \lor & [\neg P] \\ \neg & P \end{bmatrix} & \vdots & [\neg P] & \lor & [\neg P] \\ \end{bmatrix} \\ \begin{bmatrix} P \end{bmatrix} & \vdots & [\neg P] \\ \vdots & [P] & \lor & [\neg P] \\ \vdots & [P] \end{bmatrix} \\ \begin{bmatrix} P \end{bmatrix} \\ \vdots & [\neg P] \\ \vdots & [P] \end{bmatrix} $
Correct:			
	$FA^2(P)$	\Leftrightarrow	$ \begin{bmatrix} \neg & \neg P \end{bmatrix} \lor \begin{bmatrix} \neg P \end{bmatrix} \lor \\ \begin{bmatrix} P \end{bmatrix}; \begin{bmatrix} \neg P \end{bmatrix} \lor \begin{bmatrix} \neg P \end{bmatrix}; \begin{bmatrix} P \end{bmatrix}; \\ \end{bmatrix} $
	$FA^3(P)$	\Leftrightarrow	$ \begin{bmatrix} \neg & \lor & \neg P \end{bmatrix} \lor [\neg P] \lor \\ \begin{bmatrix} P \end{bmatrix}; [\neg P] \lor [\neg P]; [P] \lor \\ \begin{bmatrix} P \end{bmatrix}; [\neg P]; [P] \lor [\neg P]; [P]; [\neg P]. $
	Wrong: Crtl (sev Correct: Ctrl Wrong:	Wrong: Crtl (seven times) Correct: CtrlWrong: $FA^2(P)$ $FA^3(P)$ Correct: $FA^2(P)$	Wrong: Crtl (seven times) Correct: CtrlWrong: $FA^2(P) \iff$ $FA^3(P) \iff$ Correct: $FA^2(P) \iff$

75 Wrong:

(a) Draw the interpretation of the following state assertion:

 $\mathcal{I}\llbracket \mathsf{Light} = \mathsf{green} \land \neg (\mathsf{Button} = \mathsf{release}) \rrbracket$

on the interval [0, 7].

Correct:

(a) Draw the interpretation of the following state assertion:

$$Light = green \land \neg(Button = release)$$

on the interval [0, 7].

78	Wron	ng:
	(a)	$\models \sqcap \Longrightarrow \int P = 0,$
	(b)	$\models \lceil \neg P \rceil \Longrightarrow \int P = 0,$
	(c)	$\models [] \Longrightarrow \int P = 0.$
	Corre	ect:
	(a)	$\models [] \Longrightarrow \int P = 0,$
	(b)	$\models \lceil \neg P \rceil \Longrightarrow \int P = 0,$

93 Wrong:

$$\forall d \bullet \Box (\lceil q \rceil^1; \lceil B \rceil^d; (\ell = 0 \lor \lceil C_1 \rceil; \lceil \neg X \rceil) \lceil X \rceil^1; \lceil B \lor C_2 \rceil^1; \ell = 4$$
$$\implies \ell = 4; \lceil q' \rceil^1; (\lceil B \rceil; \lceil C_1 \rceil; \lceil B \rceil \land \ell = d); \text{true}.$$

Correct:

$$\forall d \bullet \Box(\lceil q \rceil^1; \lceil B \rceil^d; (\ell = 0 \lor \lceil C_1 \rceil; \lceil \neg X \rceil); \lceil X \rceil^1; \lceil B \lor C_2 \rceil^1; \ell = 4$$
$$\implies \ell = 4; \lceil q' \rceil^1; (\lceil B \rceil; \lceil C_1 \rceil; \lceil B \rceil \land \ell = d); \text{true}).$$

93	Wrong: In the illustration of (ii): $\begin{bmatrix} C_1 \end{bmatrix} \begin{bmatrix} \neg X \end{bmatrix}$
	Correct: $[C_1]$; $[\neg X]$
93	Wrong: In the illustration of (ii): $[B]$; $[C]$; $[B]$
	Correct: $[B]$; $[C_1]$; $[B]$
94	Wrong:
	$copy(\left\lceil q_{\mathrm{fin}} ight ceil^1$; $\left\lceil B \lor C_1 ight ceil^1$; $\left\lceil X ight ceil^1$; $\left\lceil B \lor C_2 ight ceil^1$, $\{q_{\mathrm{fin}}, B, X, C_1, C_2\}$.
	Correct:
	$copy(\lceil q_{fin} \rceil^1; \lceil B \lor C_1 \rceil^1; \lceil X \rceil^1; \lceil B \lor C_2 \rceil^1, \{q_{fin}, B, X, C_1, C_2\}).$
98	Wrong:
	$\forall x \bullet \Box \ ((F \land \ell = x); \ell > 0) \Longrightarrow$
	$(F \wedge \ell = x)$; $[P]$; true)).
	Correct:
	$\forall x \bullet \Box \ ((F \land \ell = x); \ell > 0) \Longrightarrow$
	$(F \land \ell = x); [P];$ true.
105	Wrong: Consider an interpretation \mathcal{I} , a valuation \mathcal{V} , and an interval $[b, e]$ with $\mathcal{I}, \mathcal{V}, [c, d] \models$
	GB-Ctrl.
	Correct: Consider an interpretation \mathcal{I} , a valuation \mathcal{V} , and an interval $[c, d]$ with $\mathcal{I}, \mathcal{V}, [c, d] \models$
	GB-Ctrl.

137 Wrong:

• $E \subseteq L \times B_{?!} \times \Phi(\mathbb{X}) \times \mathcal{P}(\mathbb{X}) \times L$ is the set of directed *edges*.

Correct:

• $E \subseteq L \times B_{?!} \times \Phi(\mathbb{X}) \times \mathcal{P}(\mathbb{X}) \times L$ is the finite set of directed *edges*.

172 Wrong:

Extended timed automata specialise to pure timed automata if $C = U = V = \emptyset$ and if all clock resets are of the form x := 0. Then a list of such resets can be replaced by a set of resets as used in Definition 4.3.

Correct:

Extended timed automata specialise to pure timed automata if $C = U = V = \emptyset$. In this case the list of reset operations can be replaced by a set of clock resets as used in Definition 4.3.

173 Wrong:

For extended timed automata $\mathcal{A}_e = (L_i, C_i, B_i, U_i, \mathbb{X}_i, V_i, I_i, E_i, \ell_{\text{ini},i})$ with ... Correct:

For extended timed automata $\mathcal{A}_i = (L_i, C_i, B_i, U_i, \mathbb{X}_i, V_i, I_i, E_i, \ell_{\text{ini},i})$ with ...

174 Wrong:

- (\clubsuit) there are no $i, j \in \{1, \ldots, n\}$ and $b \in U$ with $(\ell_i, b!, \varphi_i, \vec{r_i}, \ell'_i) \in E_i$ and $(\ell_j, b?, \varphi_j, \vec{r_j}, \ell'_j) \in E_j$, i.e. there is no urgent action enabled,

Correct:

- (\clubsuit) there are no $i \neq j \in \{1, \ldots, n\}$ and $b \in U$ with $(\ell_i, b!, \varphi_i, \vec{r_i}, \ell'_i) \in E_i$ and $(\ell_j, b?, \varphi_j, \vec{r_j}, \ell'_j) \in E_j$, i.e. there is no urgent action enabled,

181 **Wrong:**

$$\stackrel{\tau}{\longrightarrow} \langle (off, q0), x = y = 11.9 \rangle \dots$$

Correct:

$$\stackrel{\tau}{\longrightarrow} \langle (off, \ell_0), x = y = 11.9 \rangle \dots$$

210 Wrong:

$$c = \varepsilon + \max(\{0\} \cup \{s(\pi, \{\texttt{Error}\}) \mid \pi \in \{\texttt{N}, \texttt{T}\} \setminus \{\texttt{N}, \texttt{T}\}\})$$

Correct:

$$c = \varepsilon + \max(\{0\} \cup \{s(\pi, \{\texttt{no_tr}, \texttt{tr}\}) \mid \pi \in \{\texttt{N}, \texttt{T}\} \setminus \{\texttt{N}, \texttt{T}\}\})$$

214 Wrong: Unb.Stab-3 : $[\neg W]$; $[W \land \{ms\}]$ Correct: Unb.Stab-3 : $[\neg W]$; $[W \land \{m, s\}]$ 295 Wrong: Let $\mathcal{P}(X)$ denote the *power set* of a set X, i.e. the set of all subsets of X: $\mathcal{P}(X) = \{X \mid Z \subseteq X\}.$ Correct: Let $\mathcal{P}(X)$ denote the *power set* of a set X, i.e. the set of all subsets of X: $\mathcal{P}(X) = \{Z \mid Z \subseteq X\}.$

Thanks to the following readers for spotting the errors:

Stefan Hallerstede, Mani Swaminathan, Bernd Westphal