ADAM: The User Guide

Manuel Gieseking

Carl von Ossietzky Universitat Oldenburg
manuel.gieseking(at)informatik.uni-oldenburg.de

May 27, 2015

Abstract. AbAM (Analyzer of Distributed Asynchronous Models) is a
synthesis tool for reactive systems with multiple independent processes.
The systems are modelled as Petri games, games with one environment
player and an arbitrary but bounded number of system players described
as Petri nets. ADAM synthesis winning strategies of the Petri games by
reducing the Petri game to a finite-graph game, solving the graph game
and reconstructing the Petri game strategy from the one of the finite-
graph game.

ADAM is written in Java and uses | JavaBDD) as library for manipulating
BDDs. The APT format is used as input / output format and APT itself
is used for parsing / rendering the Petri games and for providing a data
structure for Petri nets. For visualizing the finite-graph games, the Petri
games, and their strategies, ADAM uses the DOT| format of Graphviz.

Table of Contents

[I Dependencies|........ 1
B Tnstallation]. . - .o vveve e e e 1
B UsagE] .o 2
(3.1 List of Available Modules| L. 2
[3.2 Executing the Modules|. 3
[3.3 Creating your own input files| 4
B Contactl. . ..o 5
A A DPDENAIX] . . v vt 5

1 Dependencies

The dependencies for using ADAM in the most comfortable way are:

— Java in a version greater or equal to 7 is needed.
— For saving the games and strategies as a pdf file, dot (Graphviz) has to be
installed in a version > 2.36.0.

http://javabdd.sourceforge.net/index.html
https://github.com/CvO-Theory/apt
http://www.graphviz.org/

2 Manuel Gieseking

— Please stick to the documentation of |[JavaBDD) if you would like to use
another library (like BuDDy, CUDD, |CAL), etc.) for the BDD manipulation
than the Java implementation of JavaBDD. The compiled file of such a
library has then to be placed on the same level as the jar file of ADAM.
The parameter for choosing a different library is applicable from the user
interface. By default, ADAM uses BuDDy, if it’s accessible, otherwise ADAM
falls back to the Java implementation of JavaBDD.

2 Installation

In order to install ADAM, just extract the tarball, which can be found here.
This should create a folder named ’adam’ containing the program ’adam.jar’, a
compiled version of the BDD library BuDDy ’libbuddy.so’, a README file on
how to use ADAM and a folder ’examples’ containing some Petri games and their
strategies.

To run ADAM on Linux systems, you can execute the bash script named
’adam.sh’; also placed in this folder, or directly use Java. More details on starting
and using ADAM, see Sec.

3 Usage

ADAM has three categories of modules. There are converters from Petri games,
defined in the APT file format, to the .dot format or to a pdf document visualized
by Graphviz. Then, there are generators for some example Petri games, which
are also used within the benchmark suite. Finally, there are modules creating
finite graph or Petri game strategies.

3.1 List of Available Modules

This section lists all programs ADAM provides, which can also be printed by
executing ’sh adam.sh’ or ’java -jar adam.jar’.

Usage: sh adam.sh <module> or java —jar adam.jar <module>
Available modules:

pg2dot Converts a Petri game in APT format to a dot file.

pg2pdf Converts a Petri game in APT format to a pdf file by
using Graphviz (dot has to be executable).

ex_-win_strat Returns true if there is a deadlock—avoiding winning

strategy (system players) for the in APT format
given Petri game.

win_strat_graph Creates a deadlock—avoiding winning strategy (system
players) in the finite graph game of the in APT
format given Petri game if existent. Saves the
strategy in the given folder as dot, and if dot is
executable , as pdf.

win_strat_pg Creates a deadlock—avoiding winning strategy (system
players) for the in APT format given Petri game if
existent. Saves the strategy in the given folder as
dot, and if dot is executable, as pdf.

win_strat Creates a deadlock—avoiding winning strategy (system
players) in the finite graph game and the Petri game

http://javabdd.sourceforge.net/index.html
http://www.itu.dk/research/buddy/
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html
http://embedded.eecs.berkeley.edu/Research/cal_bdd/
http://www.uni-oldenburg.de/csd/adam

bench

export

gen_phil

gen_clerks

gen_workflow

gen_robots

gen_workflow?2

ADAM: The User Guide

for the in APT format given Petri game if existent.
Saves the strategies in the given folder as dot, and
if dot is executable, as pdf. Adding ’'_strat_fg’ for
the graph and ’_strat_-pg’ for the Petri game
strategy to the filename, respectively. Also saves
the input Petri game with the partition of the
places within the same folder.

Just for benchmark purposes. Does not check any
preconditions of the Petri game. Tests existence of
strategy , calculates graph and Petri game strategy,
saves Petri game strategy as dot without rendering
it to a pdf file.

Exports some data from ADAM. At the moment only a
LaTeX export for the help dialogues is implemented.
Generates the philosopher problem for the given
number of philosophers and saves the resulting net
in the APT and dot format and, if dot is executable,
as pdf.

Generates the given number of clerks signing a
document and saves the resulting net in APT and dot
format and, if dot is executable, as pdf. This
module generates the Document Workflow examples of
the ADAM paper.

Generates the workflow examples. Saves the resulting
net in APT and dot format and, if dot is executable,
as pdf. This module generates the Job Processing
example of the ADAM paper.

Generates the self—organizing robots examples. Saves
the resulting net in APT and dot format and, if dot
is executable, as pdf. This module generates the
Self—reconfiguring Robots example of the ADAM paper.
Generates the workflow2 examples. Saves the
resulting net in APT and dot format and, if dot is
executable, as pdf. This module generates the
Concurrent Machines example of the ADAM paper.

A module can be executed by typing: 'sh adam.sh <module>’ or ’java -jar
adam.jar <module>’. This prints a help dialogue how to use this module. All

help dialogues can be found in the

3.2 Executing the Modules

Executing

sh adam.sh

or

‘java —jar adam. jar

|

prints a list of all possible modules (see Sec . The modules themselves can

be started by executing

sh adam.sh <module>

This prints a help dialogue stating the usage of this module and the available
and necessary parameters. For each module this dialogue can be found in the

Subsequently, we give some standard calls for ADAM:

‘sh adam.sh pg2pdf —i ./folder /name. apt

4 Manuel Gieseking

This call saves the visualisation of the in APT format given Petri game as pdf
file in the same folder.

sh adam.sh win_strat —i ./folder /name.apt

This is a standard call for creating the winning strategies (finite graph and Petri
game) if existent. It saves them (.dot, .pdf) in the same folder as the in APT
format given Petri game. Also saves the visualization of the input Petri game
with the used distribution of the places, visualized by different colouring of the
places.

sh adam.sh gen_workflow2 —m 2 —w 4 —o0 cw24

This call generates the Concurrent Machines (CM) examples of the ADAM paper
for two machines and four orders. It saves the resulting Petri game as APT, dot
and pdf file to the given file name (cw24.apt, cw24.dot, cw24.pdf).

Most of the optional parameters are self-explanatory. Thus, we only want to
list some special ones.

The parameter skip forces ADAM to skip all tests regarding the wellformed-
ness of the Petri game in the input file. That is, it skips the test checking if
the underlying Petri net is safe. Other tests, like checking if there is only one
environment token, are not yet implemented. The tests of the wellformedness of
the Petri net aren’t skipped.

The parameter exp is a flag, which forces ADAM to use an experimental al-
gorithm. In Section 3.3. we explain the input format of the Petri games which
ADAM can use. There is stated that we need to distribute the places of the Petri
game in disjunct sets satisfying some properties. This experimental version is
much slower, but has the ability to calculate the strategies for a subgroup of
underlying Petri nets (concurrency-preserving), without the need of any distri-
bution of the places.

The parameters starting with lib concern the BDD library. With them you
can exchange the library used for the BDD calculation, if you have compiled C
libs in the same folder as ADAM, and set some parameters for the node table
and its usage.

3.3 Creating your own input files

The data format for modelling a Petri game is described here in detail. There is
also a formal grammar for parsing Petri nets given within the document. In the
following, we give a quick summary.

ADAM works on safe Petri nets. If your net is not safe, you should transform
it into a safe net before running ADAM by adding additional places. Another
precondition is that you can use an arbitrary (bounded) number of system play-
ers, but only one environment player. Thus, you have to make sure that there is
no reachable marking in which two environment places are marked at the same
time. Furthermore, an environment player cannot convert into a system player
or vice versa. Thus, make sure that no environment token can occupy a system
place or vice versa.

http://www.uni-oldenburg.de/fileadmin/user_upload/f2inform-csd/adam/format.pdf

ADAM: The User Guide 5

An input file contains of sections for places (.places), transitions (.transitions)
and the connections between them (.flows). You have to name the Petri game
(.name "my name”) and set its type (.type LNP). If you like to, you can give a
description of the game with .description ”lorem”. The section .initial_marking
contains the initial marking of the Petri game.

Please do not use any underscores (’_”) within the names of your places while
creating your own input file in the APT file format. This causes trouble during
calculating the Petri game strategy.

For typing a place as an environment place annotate him with [env="true”],
all other places are automatically typed as belonging to the system players. Do
the same for bad places with [bad="true”].

The places of the Petri game aren’t just divided into environment and system
places, but also into groups of places stating these are the places a given token
can lie on. Thus, you can annotate the places with the [token=<number>] key-
value pair, where <number>is the number of the group this place belongs to. You
only have to annotate the system places. Environment places are automatically
marked as group 0. Thus, the numbers annotated must start from 1 and it is
not allowed to omit some natural number between 1 and the maximum number
annotated. Be aware that the partition has to be disjunct in the sense that no
two places in one group can be marked at the same time. ADAM has a feature
to support you by annotating the places or even completely annotate the places
on its own. To use this, just don’t annotate any places with [token=<number>]
and use, for example, the win_strat module. If ADAM can annotate the places
on its own, you can read the annotation by the colouring of the places in the
resulting pdf file of the Petri game. Otherwise, ADAM prints some invariants
which should support you by following the token through the net.

Here is an example input file:

.name “my name”

.type LNP

.places

envl [env="true”]

bad0O [token=1, bad="true”]
badl[token=2, bad="true”]
good [token=2]

env0 [env="true”]

.transitions
tl t2

t3
flows

tl: {envl} —> {env0}
tl: {bad0, badl} —> {badO}

.initial-marking {envl, good}

For more examples, see the examples folder within the tarball (./examples/)
or the file defining the input format.

http://www.uni-oldenburg.de/fileadmin/user_upload/f2inform-csd/adam/format.pdf

6 Manuel Gieseking

4 Contact
We appreciate your feedback on ADAM! Please send any bugs, comments, or

questions to: manuel.gieseking(at)informatik.uni-oldenburg.de
Thank you for using ADAM!

A Appendix

Following the help dialogues of each module. That is, how to call the module,
the possible and needed parameters including their explanations.

Module: pg2dot

Converts a Petri game in APT format to a dot file. The help dialogue:

usage: java —jar adam.jar pg2dot [—h] —i <file> [—o <file >]

Converts a Petri game in APT format to a dot file.

—h,——help Prints this dialog.

—i,——input <file > The path to the input file in APT format, which
should be converted.

—o,——output <file > The path to the output file. If it’s not given the
path from the input file is wused.

Module: pg2pdf

Converts a Petri game in APT format to a pdf file by using Graphviz (dot has
to be executable). The help dialogue:

usage: java —jar adam.jar pg2pdf [—h] —i <file> [—o <file >]

Converts a Petri game in APT format to a pdf file by using Graphviz (dot

has to be executable).

—h,——help Prints this dialog.

—i,——input <file> The path to the input file in APT format, which
should be converted.

—o,——output <file > The path to the output file. If it’s not given the
path from the input file is wused.

Module: ex_win_strat

Returns true if there is a deadlock-avoiding winning strategy (system players)
for the in APT format given Petri game. The help dialogue:

usage: java —jar adam.jar ex_win_strat [—exp] [—h] —i <file> [—1 <file >]
[-1lib <lib >] [-mi <nb>] [—nnb <nb>] [—oc <nb>] [-s] [-V]

Returns true if there is a deadlock—avoiding winning strategy (system

players) for the in APT format given Petri game.

—exp,——experimental Use the experimental version. Trys to find a
strategy without a given distribution annotated
to the places. The Petri net must be
concurreny—preserving . Currently still very
slow. No other optional parameters have any
effect .

—h,——help Prints this dialog.

—i,——input <file > The path to the input file in APT format, which

ADAM: The User Guide 7

should be investigated.

—1,——logger <file > The path to an optional logger file. If it’s
not set, the information will be send to the
terminal.

—1lib ,——BDDIlib <lib> The BDD library which you would like to use.
Possible values: ’buddy’, ’cudd’, ’cal’,
’java ', ’jdd ’. If the chosen C library isn’t

available , ADAM automatically falls back to the
JavaBDD library (’java’). For more information
see: http://javabdd.sourceforge.net /.
—mi,——libMaxInc <nb> Sets the maximum number of nodes by which to
increase node table after a garbage collection
for the BDD library .
—nnb,——1ibNodeNb <nb> Sets the initial node table size for the BDD

library .

—oc,——1ibOpCache <nb> Sets the operation cache size for the BDD
library .

—s,——skip Skips the tests like bounded. Saves time, but

should only be used if you are asure that your
net fullfills all necessary preconditions!
—v,——verbose Makes the tool chatty.

Module: win_strat_graph

Creates a deadlock-avoiding winning strategy (system players) in the finite graph
game of the in APT format given Petri game if existent. Saves the strategy in
the given folder as dot, and if dot is executable, as pdf. The help dialogue:

usage: java —jar adam.jar win._strat_graph [—exp] [-h] —i <file> [—1
<file >] [—1lib <lib>] [-mi <nb>] [—nnb <nb>] [—o <file >] [—oc
<nb>] [-s] [—V]

Creates a deadlock—avoiding winning strategy (system players) in the
finite graph game of the in APT format given Petri game if existent.
Saves the strategy in the given folder as dot, and if dot is executable,
as pdf.

—exp,——experimental Use the experimental version. Trys to find a
strategy without a given distribution annotated
to the places. The Petri net must be
concurreny—preserving . Currently still very
slow. No other optional parameters have any

effect .

—h,——help Prints this dialog.

—i,——input <file > The path to the input file in APT format, which
should be examined.

—1,——logger <file > The path to an optional logger file. If it’s

not set, the information will be send to the
terminal .

—lib ,——BDDIib <lib > The BDD library which you would like to use.
Possible values: ’'buddy’, ’cudd’, ’cal’,
’java ', ’jdd ’. If the chosen C library isn’t

available , ADAM automatically falls back to the
JavaBDD library (’java’). For more information
see: http://javabdd.sourceforge.net /.

—mi,——libMaxInc <nb> Sets the maximum number of nodes by which to
increase node table after a garbage collection
for the BDD library .

—nnb,——1ibNodeNb <nb> Sets the initial node table size for the BDD
library .

—o,——output <file > The path to the output file. If it’s not given
the path from the input file is wused.

—oc,——1ibOpCache <nb> Sets the operation cache size for the BDD
library .

—s,——skip Skips the tests like bounded. Saves time, but
should only be used if you are asure that your

8 Manuel Gieseking

net fullfills all necessary preconditions!
—v,——verbose Makes the tool chatty.

Module: win_strat_pg

Creates a deadlock-avoiding winning strategy (system players) for the in APT
format given Petri game if existent. Saves the strategy in the given folder as dot,
and if dot is executable, as pdf. The help dialogue:

usage: java —jar adam.jar win_strat_pg [—exp] [—h] —i <file> [—-1 <file >]
[-1ib <lib >] [-mi <nb>] [—nnb <nb>] [—o <file >] [—oc <nb>] [—s]
[—v]

Creates a deadlock—avoiding winning strategy (system players) for the in

APT format given Petri game if existent. Saves the strategy in the given

folder as dot, and if dot is executable, as pdf.

—exp,——experimental Use the experimental version. Trys to find a
strategy without a given distribution annotated
to the places. The Petri net must be
concurreny—preserving . Currently still very
slow. No other optional parameters have any

effect .

—h,——help Prints this dialog.

—i,——input <file > The path to the input file in APT format, which
should be examined.

—1,——logger <file > The path to an optional logger file. If it’s

not set, the information will be send to the
terminal .

—1lib ,——BDDIlib <lib> The BDD library which you would like to use.
Possible values: ’buddy’, ’cudd’, ’cal’,
Yjava ', ’jdd’. If the chosen C library isn’t

available , ADAM automatically falls back to the
JavaBDD library (’java’). For more information
see: http://javabdd.sourceforge.net/.

—mi,——libMaxInc <nb> Sets the maximum number of nodes by which to
increase node table after a garbage collection
for the BDD library .

—nnb,——1libNodeNb <nb> Sets the initial node table size for the BDD
library .

—o,——output <file > The path to the output file. If it’s not given
the path from the input file is used.

—oc,——1libOpCache <nb> Sets the operation cache size for the BDD
library .

—s,——skip Skips the tests like bounded. Saves time, but
should only be used if you are asure that your
net fullfills all necessary preconditions!

—v,——verbose Makes the tool chatty.

Module: win_strat

Creates a deadlock-avoiding winning strategy (system players) in the finite graph
game and the Petri game for the in APT format given Petri game if existent.
Saves the strategies in the given folder as dot, and if dot is executable, as pdf.
Adding ’_strat_fg’ for the graph and ’_strat_pg’ for the Petri game strategy to
the filename, respectively. Also saves the input Petri game with the partition of
the places within the same folder. The help dialogue:

usage: java —jar adam.jar win_strat [—exp] [—h] —i <file> [—1 <file >]
[-1ib <lib >] [—mi <nb>] [—nnb <nb>] [—o <file >] [—oc <nb>] [—s]

ADAM: The User Guide 9

[—v]

Creates a deadlock—avoiding winning strategy (system players) in the

finite graph game and the Petri game for the in APT format given Petri

game if existent. Saves the strategies in the given folder as dot, and
if dot is executable, as pdf. Adding ’_strat_fg’ for the graph and

’_strat_pg’ for the Petri game strategy to the filename , respectively.

Also saves the input Petri game with the partition of the places within

the same folder.

—exp,——experimental Use the experimental version. Trys to find a
strategy without a given distribution annotated
to the places. The Petri net must be
concurreny—preserving . Currently still very
slow. No other optional parameters have any

effect .

—h,——help Prints this dialog.

—i,——input <file > The path to the input file in APT format, which
should be examined.

—1l,——logger <file> The path to an optional logger file. If it’s

not set, the information will be send to the
terminal .

—lib ,——BDDIlib <lib > The BDD library which you would like to use.
Possible values: ’buddy’, ’cudd’, ’cal’,
Yjava ', ’jdd’. If the chosen C library isn’t

available , ADAM automatically falls back to the
JavaBDD library (’java’). For more information
see: http://javabdd.sourceforge.net /.

—mi,——libMaxInc <nb> Sets the maximum number of nodes by which to
increase node table after a garbage collection
for the BDD library .

—nnb,——1libNodeNb <nb> Sets the initial node table size for the BDD
library .

—o,——output <file > The path to the output file. If it’s not given
the path from the input file is wused.

—oc,——1libOpCache <nb> Sets the operation cache size for the BDD
library .

—s,——skip Skips the tests like bounded. Saves time, but
should only be used if you are asure that your
net fullfills all necessary preconditions!

—v,——verbose Makes the tool chatty.

Module: bench

Just for benchmark purposes. Does not check any preconditions of the Petri
game. Tests existence of strategy, calculates graph and Petri game strategy,
saves Petri game strategy as dot without rendering it to a pdf file. The help
dialogue:

usage: java —jar adam.jar bench [—h] —i <file> [—o <file >] [—ob <file >]
[—s] [~v]

Just for benchmark purposes. Does not check any preconditions of the

Petri game. Tests existence of strategy , calculates graph and Petri game

strategy , saves Petri game strategy as dot without rendering it to a pdf

file .

—h,——help Prints this dialog.

—i,——input <file > The path to the input file in APT format,
which should be examined.

—o,——output <file > The path to the output file. If it’s not given

the path from the input file is used.
—ob,——out_bench <file > The path to the output file for the internal
benchmark data.
—s,——short Using the short ouput version.
—v,——verbose Makes the tool chatty.

10 Manuel Gieseking

Module: export

Exports some data from ADAM. At the moment only a LaTeX export for the
help dialogues is implemented. The help dialogue:

usage: java —jar adam.jar export [—eh] [—h] —o <file> [—V]
Exports some data from ADAM. At the moment only a LaTeX export for the
help dialogues is implemented.

—eh,——exp-help Exporting the help dialogues to LaTeX files in the
given folder.

—h,——help Prints this dialog.

—o,——out <file> The path to the output folder for the data to export.

—v,——verbose Makes the tool chatty.

Module: gen_phil

Generates the philosopher problem for the given number of philosophers and
saves the resulting net in the APT and dot format and, if dot is executable, as
pdf. The help dialogue:

usage: java —jar adam.jar gen_phil [—h] [—ng] [—-np] —o <file> —p

<numberOfPhilosophers>

Generates the philosopher problem for the given number of philosophers

and saves the resulting net in the APT and dot format and, if dot is

executable , as pdf.

—h,——help Prints this dialog.

—ng If set, it will generated the
non—guided variant, where the
environment is just one of the
philosophers, otherwise the
guided variant will be
generated , where the environment
orders every philosopher to eat
after another. (every clerk has
to vote for yes).
Concurrency—preserving version
(DW in ADAM paper).

—np,——no_partition If set, no automatical partition
of the places is done. Thus, no
annotation from token to places
is printed in the resulting file
in APT format.

—o,——output <file > The output path where the
generated Petri game should be
saved .

—p,——nb_phils <numberOfPhilosophers> The desired number of
Philosophers eating (>= 2).

Module: gen_clerks

Generates the given number of clerks signing a document and saves the resulting
net in APT and dot format and, if dot is executable, as pdf. This module gener-
ates the Document Workflow examples of the ADAM paper. The help dialogue:

usage: java —jar adam.jar gen_clerks —c <numberOfClerks> [—h] [—np] —o
<file> [—s]

Generates the given number of clerks signing a document and saves the

resulting net in APT and dot format and, if dot is executable, as pdf.

This module generates the Document Workflow examples of the ADAM paper.

ADAM: The User Guide 11

—c,——nb_clerks <numberOfClerks> The desired number of Clerks signing
the document (>= 1).

—h,——help Prints this dialog.

—np,——no_partition If set, no automatical partition of
the places is done. Thus, no
annotation from token to places is
printed in the resulting file in APT

format .
—o,——output <file > The output path where the generated
Petri game should be saved.
—s,——simple If set, it will be generated the

liberal version (every clerk has to
vote for yes). Concurrency—preserving
version (DWs in ADAM paper).

Module: gen_workflow

Generates the workflow examples. Saves the resulting net in APT and dot format
and, if dot is executable, as pdf. This module generates the Job Processing
example of the ADAM paper. The help dialogue:

usage: java —jar adam.jar gen_workflow [—h] —m <numberOfMachines> [—np]
—o <file >

Generates the workflow examples. Saves the resulting net in APT and dot

format and, if dot is executable, as pdf. This module generates the Job

Processing example of the ADAM paper.

—h,——help Prints this dialog.

—m,——nb_machines <numberOfMachines> The desired number of machines
>= 2).

—np,——no_partition If set, no automatical partition

of the places is done. Thus, no
annotation from token to places
is printed in the resulting file
in APT format .

—o,——output <file > The output path where the
generated Petri game should be
saved .

Module: gen_robots

Generates the self-organizing robots examples. Saves the resulting net in APT
and dot format and, if dot is executable, as pdf. This module generates the
Self-reconfiguring Robots example of the ADAM paper. The help dialogue:

usage: java —jar adam.jar gen_robots —d <numberOfDestroyPhases> [—h]
[-np] —o <file> —r <numberOfRobotsAndTools>

Generates the self—organizing robots examples. Saves the resulting net

in APT and dot format and, if dot is executable, as pdf. This module

generates the Self—reconfiguring Robots example of the ADAM paper.

—d,——nb_destroy <numberOfDestroyPhases> The desired number of phases
to destroy tools (>= 0). In
every phase one tool will be

destroyed .
—h,——help Prints this dialog.
—np,——no_partition If set, no automatical

partition of the places is
done. Thus, no annotation
from token to places is
printed in the resulting file
in APT format.

12 Manuel Gieseking

—o,——output <file > The output path where the
generated Petri game should
be saved.

—r,——nb_robots <numberOfRobotsAndTools> The desired number of robots
and tools to use (>= 2).

Module: gen_workflow2

Generates the workflow2 examples. Saves the resulting net in APT and dot
format and, if dot is executable, as pdf. This module generates the Concurrent
Machines example of the ADAM paper. The help dialogue:

usage: java —jar adam.jar gen_workflow2 [—h] —m <numberOfMachines> [—np]
—o <file> —w <numberOfWorkpieces>

Generates the workflow2 examples. Saves the resulting net in APT and dot

format and, if dot is executable, as pdf. This module generates the

Concurrent Machines example of the ADAM paper.

—h,——help Prints this dialog.

—m,——nb_machines <numberOfMachines> The desired number of
concurrent machines (>= 2).

—np,——no_partition If set, no automatical

partition of the places is
done. Thus, no annotation
from token to places is
printed in the resulting file
in APT format.

—o,——output <file > The output path where the
generated Petri game should
be saved.

—w,——nb_workpieces <numberOfWorkpieces> The desired number of
workpieces to produce (>= 1).

	Adam: The User Guide
	1 Dependencies
	2 Installation
	3 Usage
	3.1 List of Available Modules
	3.2 Executing the Modules
	3.3 Creating your own input files

	4 Contact
	A Appendix

