
Mani Swaminathan

Quantitative and Structural
Analysis of Real-Time and
Probabilistic Systems

– Dissertation –

Department für Informatik

Carl von Ossietzky Universität Oldenburg

26111 Oldenburg

Thesis Defence on: 09.11.2015

Reviewers:

1. Prof. Dr. Martin Fränzle

2. Prof. Dr. Ir. Joost-Pieter Katoen

V

Abstract This dissertation contributes to the quantitative and structural analysis
of real-time and probabilistic systems. The quantitative analysis herein goes beyond
the classical boolean notion of system correctness, and is performed on system mod-
els that incorporate perturbations, prices, and probabilities in their behaviour. The
structural analysis investigated in this dissertation entails reduction techniques for
networks of real-time and probabilistic systems that exhibit parallelism. These four
aspects (namely, perturbations, prices, probabilities, and parallelism) are analyzed
on the following system models w.r.t variants of reachability properties:

• perturbed timed automata with drifting clocks and with clock resynchronization,
• multi-priced timed automata with a bounded budget,
• networks of timed automata extended with shared data variables,
• networks of probabilistic automata extended with shared data variables, and
• perturbed probabilistic timed automata with drifting clocks and with clock resyn-

chronization.

Zusammenfassung Diese Dissertation trägt zur quantitativen und struk-
turellen Analyse von Realzeit- und probabilistischen Systemen bei. Für die quan-
titative Analyse berücksichtigen wir Systemmodelle, die Ungenauigkeiten, Kosten
und Wahrscheinlichkeiten aufweisen, und dabei über die klassische “ja/nein”-
Korrektheit hinausgehen. Für die strukturelle Analyse berücksichtigen wir Re-
duktionsansätze für Netzwerke von Realzeit- und probabilistischen Systemen, die
Nebenläufigkeit aufweisen. Diese quantitative und strukturelle Analyse wird in Bezug
auf (Varianten von) Erreichbarkeitseigenschaften auf den folgenden Systemmodellen
durchgeführt:

• Realzeitautomaten mit Ungenauigkeiten in den Uhren und mit deren Resynchro-
nization,

• kostenbehafteten Realzeitautomaten mit begrenztem Budget,
• Netzwerken von Realzeitautomaten mit geteilten Datenvariablen,
• Netzwerken von probabilistichen Automaten mit geteilten Datenvariablen, und
• probabilistichen Realzeitautomaten mit Ungenauigkeiten in den Uhren und mit

deren Resynchronization.

Contents

1 Introduction . 2

2 Robustness of Closed Perturbed Timed Automata 7

3 (Un-)Decidability of Bounded Multi-Priced Timed Automata . . 26

4 Structural Transformations for Extended Timed Automata 39

5 Layered Transformations for Networks of Probabilistic Automata 70

6 Robustness of Closed Perturbed Probabilistic Timed Automata 95

7 Conclusion . 106

References . 110

List of Publications . 117

1

Introduction

This dissertation contributes to the analysis of several classes of real-time and prob-
abilistic systems along two axes - quantitative and structural, which contribute to
the paradigms of “beyond yes/no” and “design meets verification”, respectively, as
detailed next.

The quantitative analysis herein goes beyond the classical boolean notion of sys-
tem correctness, which rests on obtaining a simple “yes/no” answer to the question
of whether a given system model (expressed typically as an automaton) satisfies a
given set of properties (expressed typically as formulae in a specification logic). Such
a “yes/no” answer is however often inadequate in practice for comparing systems -
e.g., two systems S1 and S2 might both satisfy a given safety property by avoiding a
set B of designated bad states. However, even the slightest change in the parameters
of S1 might cause a state in B to be reached, while S2 might tolerate some changes
to its parameters, and still avoid the states in B. Thus, while both S1 and S2 are
identical in the classical boolean sense of avoiding the states in B, we see that S2

“behaves better” than S1 in practice. Such notions of better behaviour are formal-
ized by automata models that admit the quantitative analysis of systems. In this
dissertation, such quantitative analysis “beyond yes/no” is restricted to automata
models that are strict sub-classes of probabilistic hybrid automata [Spr01], while
the property specifications are confined to variants of reachability, whose verifica-
tion is rendered easier by the structural analysis that this dissertation additionally
considers.

In particular, we consider four aspects (the four “p”s) of such quantitative
and structural analysis, namely perturbations, prices, probabilities, and parallelism,
mainly in the setting of continuous real-time. We primarily look at extensions to
the classical timed automaton [AD94] model that enable quantitative evaluation of
the system’s timing behaviour, with the exception of probabilistic automata [Seg00]
that are investigated in the untimed setting. Timed and probabilistic automata
are additionally investigated along the structural axis, by means of transformations
that essentially aim at containing the state-space explosion arising from parallelism
in a networked setting. The four “p’s” of the quantitative and structural analysis
considered in this dissertation are as detailed next:

• Perturbations: We investigate a notion of robustness that permits us to state
(in the setting of continuous real-time) the conditions under which the system

1 Introduction 3

S2 discussed earlier is indeed better than S1. To this end, we investigate robust
reachability for closed timed automata under perturbations, whose clock-rates
may drift by small amounts. We then ask the question of whether, for any given
depth of iterations of the system’s transition relation, there exists a suitably small
clock-drift that (still) permits the system to avoid some bad state. By making
the allowable drift dependent on the iteration depth, our notion of robustness (in
contrast to related works) discounts the system’s future [dAHM03], in the sense
that an error in the system’s behaviour is considered less serious as the system
evolves. Such a discounted robustness notion yields the somewhat surprising
result that the standard reachability analysis suffices to determine whether closed
timed automata are robust against perturbations manifesting as drifting clocks.
We next investigate a clock resynchronization scheme that bounds the drift in
the clocks. This yields the result that the standard reachability analysis again
suffices to determine whether closed timed automata are robust against (small
enough) perturbations in the clock-rates, bounded by regular resynchronization.
The robustness notion in this case however does not discount the system’s future.

• Prices: We are concerned here with cost optimization, where we ask whether it is
possible to be both on time and within budget. To this end, we look at extensions
of timed automata whose guards and invariants are annotated with prices that
capture budgetary information w.r.t staying in a location or taking an edge. This
then permits the analysis and optimization of phenomena (such as scheduling)
that are beyond the scope of timed automata. Such priced extensions to timed
automata lie at the frontier between timed automata (for which reachability and
related properties are decidable) and linear hybrid automata (for which such
properties become undecidable, cf. [HKPV98]). Though the prices here exhibit
richer dynamics than the clocks of timed automata, they may be neither queried
nor reset while taking edges. Such an observer restriction on the prices leads
to decidability of the optimum reachability problem for certain classes of priced
timed automata, in particular for a single priced variable taking on both non-
negative and negative values (owing to a priced refinement of the region-graph
of timed automata, cf. [BBBR07]), and for multiple priced variables taking on
only non-negative values (owing to a manipulation of priced extensions to the
zones of timed automata, where termination relies on a well-quasi ordering of
the symbolic states under liveness and cost-divergence assumptions on cycles of
the underlying transition system, cf. [LR08]).
Our contribution in this setting is an investigation of priced timed automata
with multiple priced variables taking on both non-negative and negative values.
To this end, we show that such multi-priced timed automata are as expressive
as stop-watch automata under a (semantic) condition that the cost-optimization
is restricted to viable paths of the underlying transition system, which respect
(upper- and lower-) bounds on the priced variables corresponding to budgetary
constraints in practice. As stop-watch automata are as expressive as linear hybrid
automata [HKPV98], this then yields an undecidability result of the cost-optimal
reachability problem for bounded multi-priced timed automata.
However, when bounded multi-priced timed automata are additionally subject to
a semantic condition of cost-charging on (quasi-) cyclic paths of the underlying
transition system (similar to the cost divergence assumption in [LR08]), the
cost-optimal reachability problem may be reduced to the solution of a linear

4 1 Introduction

constraint system representing the path conditions over a finite number of viable
paths of bounded length, thus yielding an effective decision procedure.
The cost bounds on viable paths are central to both the undecidability result and
the decision procedure (under the additional cost-charging condition) discussed
above. We leave open the investigation of multi-priced timed automata without
cost-bounds on viable paths.

• Probabilities: Many communication protocols (such as the IEEE 801.11 WLAN
MAC, cf. [KNPS06]) incorporate probabilistic behaviour for message exchanges
among multiple stations sharing a common channel. The aim here is not to
achieve absolute collision freedom, but rather an “efficient” means of transmit-
ting messages. The performance measure for efficiency here is a high probability
of successful message transmission, under some timing constraints.
Probabilistic Timed Automata, cf. [KNSS02], which are timed automata anno-
tated with discrete probability distributions on the edges, lend themselves as a
natural formalism for modelling such protocols, whose performance is evaluated
(among others) by the notion of probabilistic timed reachability. Our contribution
here is an analysis of probabilistic timed automata under perturbations on the
clock-rates. We attempt to show that closed probabilistic timed automata with
perturbations on the clock-rates are robust w.r.t probabilistic timed reachability,
under both a discounted notion of robustness, and under bounds on the clock-
drifts resulting from regular resynchronization without discounting the system’s
future, yielding probabilistic counterparts to the analogous results for timed au-
tomata.

• Parallelism: In the untimed setting, randomized distributed algorithms (which
solve fundamental problems in distributed computing such as consensus, mutual
exclusion, and leader election by symmetry-breaking) are naturally modelled as
(networks of) probabilistic automata [Seg00]. The communication between the
processes participating in the (randomized) distributed algorithm is modelled
primarily by shared variables that the processes may read from and write to.
The design and analysis of randomized distributed algorithms is however highly
non-trivial. This is mainly due to the fact that the stochastic process describ-
ing the evolution of a randomized distributed algorithm changes depending on
the generally unknown scheduling policies and relative speeds of the individ-
ual process components, entailing a complex interplay between randomization
and nondeterminism. The behaviour of such algorithms is typically expressed in
terms of probabilistic temporal properties.
This dissertation attempts to contribute to the easier verification of randomized
distributed algorithms modelled as networks of probabilistic automata, by means
of a structural simplification of the parallelism underlying the system’s model. In
particular, we attempt to simplify the reasoning of such algorithms by enriching
probabilistic automata with the concept of layering. The main underlying idea
is that the computations of randomized distributed algorithms often exhibit a
sequential (i.e., layered) structure owing to the absence of dependencies between
processes, which may then be exploited to restructure the algorithm’s model
such that the resulting restructuring exhibits a reduced state-space, while also
enabling a conceptual simplification of the algorithm’s underlying behaviour,
owing to reduced parallelism. Such a layered transformation is investigated on
an algorithm for randomized mutual exclusion by Kushilevitz and Rabin [KR92].

1 Introduction 5

Luis Maria Ferrer Fioriti at Saarland University however pointed out that our
layered transformation would not be sound when no restrictions are placed on the
allowable resolutions of non-determinism in probabilistic automata. Moreover,
there appear to technical issues concerning the necessary termination conditions
and the class of properties preserved. Notwithstanding these issues, the applica-
bility of our layered transformation to the randomized distributed algorithm of
[KR92] was confirmed by Ian Larson under the supervision of Arpit Sharma at
RWTH Aachen University, through an extensive experimental evaluation using
the PRISM model checker for a wide range of probabilistic temporal proper-
ties [Sha15], thus demonstrating the “design meets verification” paradigm by
means of reduced parallelism in the algorithm of [KR92] for randomized mutual
exclusion.
The main contribution to the structural axis of this dissertation is an extensive
analysis of networks of timed automata extended with shared data-variables by
means of several structural transformations, including two variants of layering.
In particular, we analyze the properties that are preserved (in parallel contexts)
by the transformations of separation, flattening, and (independence-based and
precedence-based) layering. The interplay of these transformations is demon-
strated on an enhanced version of Fischer’s protocol for real-time mutual exclu-
sion, whose subsequent verification is rendered almost trivial, thus demonstrat-
ing the “design meets verification” paradigm by means of substantially reduced
parallelism in extended timed automata networks.

The dissertation thus contributes to the (quantitative and/or structural) analysis
of the following system models, and is based on (extended and revised versions of)
the following (co-authored) refereed publications listed separately using a numeric
citation style:

• perturbed timed automata with drifting clocks and with clock resynchronization,
considered in Chapter 2 and published as [1, 2],

• bounded multi-priced timed automata, considered in Chapter 3 and published as
[3],

• networks of timed automata extended with shared data variables, considered in
Chapter 4 and published as [4, 6, 7],

• networks of probabilistic automata extended with shared data variables, consid-
ered in Chapter 5 and published as [5],

• perturbed probabilistic timed automata with drifting clocks and with clock resyn-
chronization, considered in Chapter 6.

Chapters 5 and 6 dealing with probabilistic models contain results that have
not yet been fully worked out. The dissertation concludes with Chapter 7, where
a classification scheme is proposed for the models considered in this dissertation,
within the unifying framework of symbolic probabilistic systems [KNS01].

Acknowledgements

This dissertation would not have come about were it not for the following individuals
and institutions, whose help and support is hereby gratefully acknowledged:

• Prof. Dr. Martin Fränzle and Prof. Dr. Ernst-Rüdiger Olderog for their mentor-
ship of the author over the years,

6 1 Introduction

• Prof. Dr. Ir. Joost-Pieter Katoen for having introduced the author to probabilis-
tic systems,

• Dr. Stephanie Kemper for having agreed to serve on the thesis committee,
• Ms. Andrea Göken, Mr. Jürgen Niehaus, and Ms. Ira Wempe for administrative

support,
• colleagues at the research groups “Correct System Design” and “Hybrid Sys-

tems” for a pleasant atmosphere at work,
• friends and family of the author for support concerning personal issues, and
• the Deutsche Forschungsgemeinschaft for its funding through the Graduiertenkol-

leg “Trustsoft” (Trustworthy Software Systems) and the Sonderforschungsbere-
ich “AVACS” (Automatic Verification and Analysis of Complex Systems).

About the author

Mani Swaminathan holds a Master’s degree in Telecommunications from the Indian
Institute of Technology, Delhi. From 2000 to 2005 he has held positions in industry
and academia in India and Switzerland, including General Electric Global Research
and the Ecole Polytechniqe Federale de Lausanne. Later on he was a PhD student in
the DFG-funded Graduiertenkolleg Trustsoft at the University of Oldenburg, and a
consultant in avionics and aerospace at Altran Deutschland. From November 2008 to
December 2015, he was a research assistant at the Univesity of Oldenburg within the
DFG-funded Sonderforschungsbereich AVACS (Automatic Verification and Analysis
of Complex Systems).

2

Robustness of Closed Perturbed Timed

Automata

2.1 Introduction

Real-time systems, which have strict timing requirements, have emerged as an en-
abling technology for several important application domains, and hence rigorous
methods and techniques to ensure their correct functioning are of utmost impor-
tance. Timed Automata (TA) [AD94] have been extensively studied as a formalism
for modelling real-time systems. TA extend finite automata by augmenting them
with “clock” variables based on a dense-time model, which quantitatively capture
the behaviour of the system with time. TA model checkers such as UPPAAL [BY04]
and KRONOS [Yov97] have been successfully used in several industrial case studies,
such as [LPY01].

A key result for the decidability properties of TA is the region-automaton con-
struction [AD94], which partitions the inherently infinite state space of the TA into
finitely many equivalence classes or “regions”. The number of such regions is, how-
ever, exponential in the number of clocks, and the region construction is therefore
not suited in practice for model checking TA when the number of clocks is large.
Most available tools for model checking TA (such as UPPAAL) instead use on-the-
fly algorithms that dynamically search through the state space of the TA, which
is partitioned into “zones” [BY04]. Associated data structures such as Difference
Bound Matrices (DBMs) [BY04] are used to represent zones in TA-based verifica-
tion. Reachability analysis forms the core of such verification tools [ABBL03] and is
implemented by a Forward Reachability Analysis (FRA) algorithm that computes
the set of successors of a zone, with termination being enforced by zone-widening
using k-normalization [BY04].

However, such analyses, whether region- or zone-based, assume that the clocks of
the TA are perfectly synchronous, which is not the case in practice, where the clocks
could drift by small amounts. It is shown in [Pur00, WDMR08] that the usual region-
based analysis is not correct w.r.t. reachability when considering perturbations in the
clocks, in the sense that an unsafe state, reported as unreachable for perfect clocks,
might well be reachable by iterating often enough through a cycle in the TA, even
when the clocks drift by infinitesimally small amounts, and such a TA is therefore
not “robustly safe”. This insight leads to the definition of robust reachability, where

8 2 Robustness of Closed Perturbed Timed Automata

a reachability property is considered to be “robustly (in-)valid” iff it does not change
its validity for some small relative drift between clocks.

“Robust” reachability analysis [Pur00, WDMR08] therefore computes the set
of states that are reachable for every (i.e., even the slightest) drift, reporting the
(closed) TA as not being robustly safe iff that enlarged reach-set contains an unsafe
state (where the guards and invariants of a closed TA are all closed, i.e., defined only
by non-strict inequalities). This is made possible due to Theorem 15 of [WDMR08]
that establishes an equivalence in the reach-set computation between the clock-drift
and guard-enlargement models of perturbations in closed TA , where furthermore,
each cycle of the TA is a progress cycle, wherein every clock is reset at least once
per cycle. For such TA models, with maximum clock-drift parameterized by ε > 0,
and with the maximum allowable guard-enlargement parameterized by ∆ > 0, and
with the corresponding reachable state-spaces being Reachε (ε > 0 clock-drift with
no guard-enlargement), Reach∆ (∆ > 0 guard-enlargement with no clock-drift),
and Reachε

∆ (ε > 0 clock-drift and ∆ > 0 guard-enlargement), Theorem 15 of
[WDMR08] establishes that ∩ε>0Reach

ε has an empty intersection with the closed
target state iff there exists some ε > 0 and ∆ > 0 such that the intersections of
Reachε and of Reach∆ with the closed target state are again empty.

Robust safety of closed TA models (under the progress cycle assumption) in
[Pur00, WDMR08] is thus based on computing on the reach-set ∩∆>0Reach∆,
based on searching the strongly connected components of the region-graph, thus
suffering from the exponential size of the region-graph in the number of clocks.
Symbolic algorithms that compute this reach-set more efficiently are presented in
[DK06, JR11, KLMP14, San15]. These symbolic algorithms manipulate zones, which
are efficient polyhedral representations of the clock-constraints of TA. The symbolic
algorithms in [DK06, JR11] works alternate between forward and backward anal-
ysis, and are applicable to closed TA, whose cycles need to satisfy –in addition to
the previously mentioned progress cycle condition– a flatness condition, wherein
each location of the TA is part of at most one cycle. The symbolic algorithm in
[KLMP14] is applicable to non-flat closed TA with progress cycles, and augments
the standard symbolic forward analysis (in TA model checkers such as UPPAAL) by
a symbolic acceleration of all (progress) cycles. The works [JR11, San15] go beyond
the previously considered existential version of the robust safety problem under
guard-enlargement, by computing a robustness margin. In particular, the symbolic
algorithms in [JR11, San15] compute additionally the maximum allowable guard-
enlargment ∆max > 0 such that Reach∆max yields an empty intersection with the
closed target. While the symbolic computation of the robustness margin in [JR11] is
applicable only to closed flat TA with progress cycles, the most recent work [San15]
does away with this flatness restriction, while still requiring closedness and progress
cycles. The computation of the robustness margin in [San15] (for closed non-flat TA
with progress cycles) is however only a semi-algorithm, in the sense that termina-
tion is not always guaranteed. The work in [Dim07] considers TA that do admit
strict inequalities, but again under the progress cycle assumption. Similar to the
perturbation model considered in this chapter, the symbolic algorithm in [Dim07]
decides (existential) robust safety of such TA against drifting clocks. In contrast
to our analysis, which is purely forward-based as in UPPAAL, the symbolic algo-
rithm in [Dim07] entails a combination of forward and backward analysis, as in
[Pur00, WDMR08, DK06, JR11].

2.1 Introduction 9

The region-based or symbolic (zone-based) algorithms in each of the works
[Pur00, WDMR08, DK06, Dim07, JR11, KLMP14, San15] induce a performance
overhead compared to the standard forward reahability analysis (FRA) algorithm
used within tools like UPPAAL. All these works (except [Dim07]) assume that the
guards, invariants, and targets of the TA are closed. Furthermore, all of them as-
sume that each cycle of the TA is a progress cycle. The unsafe states that become
reachable with drifting clocks (but which are unreachable with perfect clocks) are
added to such robust reach-sets only by iterating an unbounded number of times
through the (progress) cycles of the TA, essentially implying an inifinite life-time of
the system. Moreover, the model of clock-drift considered in these works is one of
unbounded relative drift between the clocks, which does not take into account the
regular resynchronization of clocks that is performed in practical real-time systems.
This chapter addresses these two issues, with two main contributions:

1. We first consider the model of clock-drift introduced by Puri [Pur00]. We show
that, under the assumption of closed guards and invariants in the TA, the stan-
dard zone-based FRA of TA performed by tools such as UPPAAL is indeed exact
when testing for robust safety of timed systems having an arbitrary, but finite
life-time. We test here whether the TA can robustly avoid the target arbitrarily
long, in the following sense: for any given number i of iterations of the transition
relation, there is εi > 0 such that Reachεi

i has an empty intersection with the
target state, where Reachεi

i is the reachable state space after i iterations of the
transition relation under maximum perturbation εi of the clocks. Note that εi
may depend on the number i of executed iterations, with εi decreasing (not
necessarily strictly) with i, and potentially tending to 0 as i tends to ∞. Thus,
robust safety under our notion does not imply the existence of a homogeneous
ε > 0 that is independent of the number of iterations and such that Reachε

has an empty intersection with the target state (which is the notion considered
in [Pur00, dWDMR04, Dim07]). However, our notion of robust safety implies
avoidance of the target state by some strictly positive value of the perturba-
tion for any arbitrary, but finite number of iterations. This is applicable to all
systems having a finite life-time.

2. Next, we introduce a more realistic model of clock-drift that takes into account
the regular resynchronization performed in practical real-time systems (such as
bit-stuffing in communication protocols), which results in a bounded relative
clock-drift. Under the assumption of closed guards, invariants, and targets, we
show that the standard zone-based FRA of TA is again exact when testing for
robust safety of such timed systems with clock resynchronization. In this case,
a certification of robust safety imposes no restriction on the life-time of the
system — it implies avoidance of the (closed) target by all 0 < ε < 1 (where
the ε now parameterizes the maximum relative bounded clock-drift subject to
periodic resynchronization) independent of the number of iterations.

Section 2.2 of this chapter briefly reviews TA definitions and semantic, along
with our assumptions. It also presents the standard algorithm for zone-based FRA.
Section 2.3 describes the robustness problem for TA in the context of the model
of clock-drift introduced in [Pur00], and shows the exactness of the standard zone-
based FRA algorithm w.r.t robust safety for systems having a finite life-time. Section
2.4 then introduces our model of bounded clock-drift that accounts for regular clock
resynchronization, and shows the exactness of the standard zone-based FRA algo-

10 2 Robustness of Closed Perturbed Timed Automata

rithm w.r.t robust safety, but now without any restrictions on the life-time of the
system. Section 2.5 concludes this chapter. The results of this chapter have been
previously published as [1, 2]. This chapter is an extended and revised version of the
publication [2], completed with proofs of the results stated therein, with updated
references to the literature that has appeared since its publication.

2.2 Timed Automata and Forward Analysis

Given a finite set C of clocks, a clock valuation over C is a map v : C → R≥0 that
assigns a non-negative real value to each clock in C. If n is the number of clocks, a
clock valuation is basically a point in R

n
≥0, which we henceforth denote by u,v etc.

Definition 2.1. A zone over a set of clocks C is a system of constraints defined by
the grammar g ::= x ⊲ d | x − y ⊲ d | g ∧ g, where x, y ∈ C, d ∈ N, and ⊲ ∈ {<,≤
, >,≥}. The set of zones over C is denoted Z(C).

A closed zone is one in which ⊲ ∈ {≤,≥}, and we denote the set of closed zones over
C by Zc(C). A zone with no bounds on clock differences (i.e., with no constraint of
the form x− y ⊲ d) is said to be diagonal-free, and we denote the corresponding set
of zones by Zd(C). The set Zcd(C) denotes zones that are both closed and diagonal-
free. The set ZcdU (C) denotes the set of closed, diagonal-free zones having no lower
bounds on the clocks.

Definition 2.2. A TA is a tuple A = (L,C, (l0,0), T, Inv), with

• a finite set L of locations and a finite set C of clocks, with |C| = n.
• An initial location l0 ∈ L together with the initial clock-valuation 0 where all

clocks are set to 0 1

• a set T ⊆ L × Zcd(C) × 2C × L of possible transitions between locations. A

transition t between two locations (l, l′) is denoted l
t→ l′, and involves a guard

G(t) ∈ Zcd(C) and a reset set Rest ⊆ C.
• Inv : L→ ZcdU (C) assigns invariants to locations

In the sequel, we will denote by k the clock ceiling of the TA A under investigation,
which is the largest constant among the constraints of A (including the predicate
defining the unsafe state). Note that we assume that the guards of the automaton
are closed and diagonal-free zones. Invariants in addition have only upper-bounds on
clocks. Diagonal constraints of the form x−y ⊲d thus are not part of the TA syntax,
but are of relevance, since they occur during the course of forward reachability
analysis as a result of the time-passage operation defined as follows:

Definition 2.3. For a clock valuation x, its time-passage is
timepass(x) = {x+ d | d > 0}, where x+ d denotes the addition of a strictly posi-
tive scalar d to each component of x. This is canonically lifted to clock-zones Z as
timepass(Z) =

⋃
x∈Z timepass(x).

1 We assume without loss of generality that all clocks are initially set to 0.

2.2 Timed Automata and Forward Analysis 11

Definition 2.4. ⌊x⌋k denotes the k-region containing x, which is the equivalence
class induced by the k-region-equivalence relation ≈k. For two clock valuations x
and y, x ≈k y iff

∀i ≤ n :

(xi > k) ∧ (yi > k)
∨ ((int(xi) = int(yi)) ∧ (fr(xi) = 0⇔ fr(yi) = 0)∧
∀j ≤ n : (fr(xi) ≤ fr(xj)⇔ fr(yi) ≤ fr(yj)))

Here, for a clock valuation x ∈ R
n
≥0, xi denotes its i-th component, i.e., the value of

the i-th clock, and int(xi) and fr(xi) respectively denote the integer and fractional
parts of xi.

Definition 2.5. [Bou04] A k-bounded zone (k-zone) has no constant exceeding k
among its constraints. For a zone Z, its k-normalization, denoted normk(Z), is the
smallest k-bounded zone containing Z.

If Z is a k-zone, normk(Z) = Z. k is taken to be the largest constant appearing
in the constraints (including the unsafe state) of the TA.

Definition 2.6. Reach ⊆ L × (C → R≥0) is the reach-set of the TA A, consisting
of an infinite set of (concrete) states of the TA of the form (l,x), where l ∈ L and
x ∈ R

n
≥0. It is defined inductively as follows, with Reachi denoting the reach-set

under i ∈ N steps, starting from the initial state (l0,0) and alternating between
time-passage and discrete-location transitions:2

• Reach0 = {(l0,0)}.
– if i even Succ(Reachi) =

{
(l,x)

∣∣∣∣
∃u ∈ Inv(l) : (l,u) ∈ Reachi

∧ x ∈ timepass(u) ∩ Inv(l)

}

– if i odd Succ(Reachi) =

(l,x)

∣∣∣∣∣∣

∃t ∈ T, l′ ∈ L,u ∈ Inv(l′) ∩G(t) :

l′
t→ l ∧ (l′,u) ∈ Reachi

∧ x ∈ Inv(l) ∩Rest(u)

,

where Rest(u)(c) = u(c) iff c 6∈ Rest, else Rest(u)(c) = 0.
• ∀i ≥ 0, Reachi+1 = Reachi ∪ Succ(Reachi).
• Reach =

⋃
i∈N

Reachi.

Reach is computed in tools like UPPAAL by the following zone-based forward
reachability algorithm. Given a timed automaton A with the target (l, B), it de-
cides whether Reach ∩ (l, B) 6= ∅. Reachable state sets are represented by lists
〈(l1, Z1), . . . , (lm, Zm)〉 of location-zone pairs. Let Ri denote the (symbolic) reach-
able state-space at the i-th (i ≥ 0) iteration.

1. Start with the state-set R0 = {(l0,0)}, or equivalently, in DBM form,
R0 = l0×{

∧
x∈C x−x0 ≤ 0)}, where x0 6∈ C is a pseudo-clock used to represent

the constant 0.
2. For i ≥ 0, compute the symbolic successors of Ri, denoted Post(Ri), separately

for even and odd values of i, as follows:

2 To simplify the proofs, we use even- and odd-numbered steps to distinguish be-
tween time-passage (of possibly zero duration) and transitions between discrete
locations.

12 2 Robustness of Closed Perturbed Timed Automata

• If i even, Post(Ri) = {(l, Z) | ∃(l, Z′) ∈ Ri

: Z = normk(timepass(Z
′)) ∧ Inv(l)}

• If i odd, Post(Ri) = {(l, Z) | ∃(l′, Z′) ∈ Ri, t ∈ T : l′
t→ l

∧ Z = Rest(Z
′ ∧G(t)) ∧ Inv(l)}

3. Build Ri+1 = Ri · Post(Ri), where · denotes conditional concatenation that
suppresses subsumed zones, i.e., removes (l, Z) if there is another (l, Z′) with Z
implying Z′.

4. Repeat steps (2) and (3) until Ri+1 = Ri. Denote the last set Ri thus computed
as R. Termination is guaranteed by the use of k-normalization, as there are only
finitely many different k-zones such that only subsumed zones arise eventually.

5. Test whether Z ∧ B is satisfiable for some (l, Z) ∈ R. If so then report “(l, B)
is reachable”, otherwise report “(l, B) is un-reachable”.

It has been shown that this algorithm is sound and complete w.r.t. reachability
[BY04] in the sense that Reach ∩ (l, B) = ∅ iff R ∩ (l, B) = ∅.

2.3 Robustness against drifting clocks under
finite life-time

We have hitherto considered perfectly synchronous clocks. We now consider drifting
clocks that could occur in practice, as introduced in [Pur00]. This phenomenon is
modelled by introducing a parameter ε > 0 that characterizes the relative drift
between the clocks. The slopes of the clocks are assumed to be within the range[

1
1+ε

, 1 + ε
]
. This is equivalent to a relative drift in the range

[
(1
1+ε

)2, (1 + ε)2
]

between the clocks. We could alternatively consider the slopes to be in the range
[1− ε, 1 + ε]. The behaviour of both models w.r.t. infinitesimally small values of ε
is identical, only that in our case, the slope of a clock never becomes negative no
matter how large ε is. We then have a modification of the time-passage operation
as follows:

Definition 2.7. For a clock valuation x, its time-passage under perturbation of ε

is: timepassε(x) =
{
x+ d · e

∣∣∣d > 0, e ∈
[

1
1+ε

, 1 + ε
]n}

.

For a Zone Z, timepassε(Z) =
⋃

x∈Z timepassε(x)

While this model restricts the slopes of the clocks based on the value of param-
eter ε, the actual relative drift between the clocks increases without bound with
increasing delay d > 0. The reachable state space also gets enlarged. For a given
perturbation of ε, the corresponding perturbed reach-set Reachε is defined induc-
tively, similar to the non-perturbed case, by accounting for drifting clocks through
the replacement of the deterministic timepass() by an appropriate non-deterministic
timepassε() for steps corresponding to time-passage.

We now consider the effect of clock-drift on deciding whether some location-zone
pair (l, B) is reachable. As an example (cf. Fig. 2.1), consider a timed automaton A,
consisting of a single location l0, two clocks x, y, the invariant of l0 being x ≤ 2, and
a self-looping transition t consisting of a guard x = 2?, with the associated resets
x := 0, y := 0. Let the unsafe state of A be characterized by (l0, B) = (l0, y > 2).
Assuming perfect clocks, the state-space of A is given by Reach = (l0, Z), where

2.3 Robustness against drifting clocks under finite life-time 13

Z ≡ (x ≤ 2 ∧ y = x), and A is clearly safe, as Reach ∩ (l0, B) = ∅. For drift
characterized by a given ε > 0, the corresponding state space is Reachε = (l0, Z

ε),
where Zε ≡ x ≤ 2 ∧ x

(1+ε)2
≤ y ≤ x(1 + ε)2. Thus, ∀ε > 0 : Reachε ∩ (l0, B) 6= ∅

and A is therefore not “robustly” safe. The automaton along with the associated
state-space for each case is illustrated in Fig. 2.1.

x = 2? / x := 0
y := 0

t

x ≤ 2

y := 0
x := 0

l0

(a) Z ≡ y = x ∧ x ≤ 2
l0y

2

1

(0, 0) 1 2 x

(b) Zε ≡
x

(1+ε)2 ≤ y ≤ x(1 + ε)2 ∧ x ≤ 2

Fig. 2.1. A timed automaton A along with its state-spaces (a) without drift: (l0, Z),
(b) for a drift of ε : (l0, Z

ε).

Related work on robust reachability of closed TA [Pur00, WDMR08, DK06,
JR11, KLMP14, San15] compute the set ∩ε>0Reach

ε under the progress cycle con-
dition. For this example, ∩ε>0Reach

ε = Reach. This is because, for a zone Z,
∩ε>0 timepassε(Z) = timepass(cl(Z)), where cl(Z) is the closure of Z, obtained
by relaxing each strict inequality of Z to the corresponding non-strict one. In the
present case, Z ≡ 0 is closed, as is (Z ∪ timepass(Z)) ∩ Inv(l0) ≡ y = x ∧ x ≤ 2,
so ∩ε>0Reach

ε ∩ (l0, B) = ∅. Hence, if open target states were allowed, the algo-
rithms in [Pur00, WDMR08, DK06, JR11, KLMP14, San15] would all report this
automaton as being robustly safe, while even the slightest perturbation would ac-
tually make the unsafe state reachable. However, if B ≡ y ≥ 2, we see that the
automaton of Fig. 2.1 is unsafe even with perfect clocks, while for B ≡ y ≥ 3, the
automaton is now safe even for drifting clocks, for all 0 < ε <

√
1.5− 1.

We thus observe that closed constraints give consistent results while testing the
automaton of Fig. 2.1 for safety, both with perfect clocks and under drift. Note
also that this automaton has a single progress cycle, which additionally resets all
clocks simultaneously in a single transition. The remit of this chapter is to formulate
conditions under which tests on TA for robust safety give identical results for both
perfect and drifting clocks. We define for this purpose a grid-point and its associated
neighbourhood as follows:

Definition 2.8. Grid denotes the set-of all grid-points in R
n
≥0, i.e.,

Grid = {xg ∈ R
n
≥0 | ∀1 ≤ i ≤ n : fract(xgi) = 0}. For x ∈ R

n
≥0,

grid(x) = {xg ∈ Grid | dist(x,xg) < 1}, where
dist(x,xg) = max1≤i≤n|xi − xgi|. The subset of Grid that contains only those grid-
points bounded by k is denoted k −Grid.

Thus, ∀xkg ∈ k−Grid: ⌊xkg⌋k = xkg. We will henceforth denote points in Grid by
the suffix g (xg etc.) and points in k −Grid by the suffix kg (xkg etc.).

14 2 Robustness of Closed Perturbed Timed Automata

Definition 2.9. For ug ∈ Grid, we define its neighbourhood
Nk(ug) =

⋂
ε>0 ⌊timepassε(ug)⌋k. For a zone Z, its neighbourhood is

defined as: Nk(Z) =
⋃

ug∈Z∩Grid Nk(ug)

Nk(ug) is the union of all neighbouring k-regions of ug, where a k-region r is
said to neighbour ug iff a point in r is reachable by time-passage from ug for every
drift, i.e., ∀ε > 0 : timepassε(ug) ∩ r 6= ∅. Thus Nk(ug) is the result of adding to
ug all k-regions of Hausdorff distance 0 in temporally non-backward directions.

It must be understood here that the neighbourhood is defined only for grid-
points3. It then follows that for any zone Z, Nk(Z) is idempotent, i.e., Nk(Nk(Z)) =
Nk(Z), and that for a zone Z that has no closed diagonal borders, Nk(Z) con-
tains exactly the same grid-points as normk(timepass(Z)), and thus Nk(Z) =
normk(timepass(Z)) for such a zone.

Also, ∀ug /∈ k −Grid : Nk(ug) = normk(timepass(ug)). The following lemmas
establish some useful properties of the neighbourhood operator.

Lemma 2.1. ∀x ∈ R
n
≥0, ∀ug ∈ Grid :

x ∈ Nk(ug)⇔ ∀ε > 0 ∃y ∈ ⌊x⌋k : y ∈ timepassε(ug)

Proof. Let x (resp. ug) be arbitrary points in R
n
≥0 (resp. Grid).

x ∈ Nk(ug)
⇒ x ∈ ⋂ε>0 ⌊timepassε(ug)⌋k
⇒ ∀ε > 0, x ∈ ⌊timepassε(ug)⌋k
⇒ ∀ε > 0, ∃y ∈ ⌊x⌋k : y ∈ timepassε(ug).
Conversely, x /∈ Nk(ug)
⇒ x /∈ ⋂ε>0 ⌊timepassε(ug)⌋k
⇒ ∃ε > 0 : x /∈ ⌊timepassε(ug)⌋k
⇒ ∃ε > 0 ∀y ∈ ⌊x⌋k : y /∈ timepassε(ug). ⊓⊔

Lemma 2.2. For any ug ∈ Grid, Nk(ug) is given by:

Nk(ug) = normk

{
ug + d+

n∑

i=1

ai · ei | d > 0, ai ∈ [0, 1)

}
,

where ei is the i-th unit vector.

Here ug + d denotes the addition of d to each component of ug.

Proof. We show that Nk(ug) = N ′(ug), where
Nk(ug) =

⋂
ε>0 ⌊timepassε(ug)⌋k and

N ′(ug) = normk

{
ug + d+

∑n

i=1 ai · ei | d > 0, ai ∈ [0, 1)
}
,

where ei is the i-th unit vector

• Let x ∈ N ′(ug)
⇒ 0 ≤ dist(x, normk(timepass(ug)) < 1
⇒ ∀ε > 0 ∃y ∈ ⌊x⌋k : y ∈ timepassε(ug)
[From the definitions of ⌊x⌋k and timepassε(ug)]
⇒ x ∈ Nk(ug) [From Lemma 2.1]
⇒ N ′(ug) ⊆ Nk(ug)

3 By considering only closed guards and invariants for the automaton, we ensure
that all the zones we encounter during FRA contain at least one grid-point.

2.3 Robustness against drifting clocks under finite life-time 15

• Let x /∈ N ′(ug)
⇒ dist(x, normk(timepass(ug)) ≥ 1
⇒ ∃ε > 0 ∀y ∈ ⌊x⌋k : y /∈ timepassε(ug)
[From the definitions of ⌊x⌋k and timepassε(ug)]
⇒ x /∈ Nk(ug) [From Lemma 2.1]
⇒ N ′(ug) ⊇ Nk(ug)

Thus N ′(ug) ⊆ Nk(ug) ∧ N ′(ug) ⊇ Nk(ug) ⊓⊔

This means that for any zone Z, Nk(Z) is obtained as follows: First apply the
standard unperturbed time-passage operator on Z, and then widen the diagonal
constraints which are non-strict inequalities of the resulting conjunctive system by
1, to the next higher strict inequalities, i.e., x − y ≤ c is widened to x − y < c + 1,
followed by standard k-normalization.

We first state the following property of any diagonal-free k-zone B [Bou04]:

Property 2.1. ∀x, ∀y ∈ ⌊x⌋k : x ∈ B ⇔ y ∈ B.

This property is then used to prove the following lemma:

Lemma 2.3. Given any (diagonal-free) k-zone Z, x ∈ R
n
≥0, ug ∈ Grid,

x ∈ Nk(ug) ∩ Z ⇔ ∀ε > 0 ∃y ∈ ⌊x⌋k : y ∈ timepassε(ug) ∩ Z

Proof. x ∈ Nk(ug) ∩ Z
⇒ x ∈ ⋂ε>0 ⌊timepassε(ug)⌋k ∩ Z
⇒ ∀ε > 0, x ∈ ⌊timepassε(ug)⌋k ∩ Z. Thus, from Property 2.1,
⇒ ∀ε > 0, ∃y ∈ ⌊x⌋k : y ∈ timepassε(ug) ∩ Z
Conversely, x /∈ Nk(ug) ∩ Z
⇒ x /∈ ⋂ε>0 ⌊timepassε(ug)⌋k ∩ Z
⇒ ∃ε > 0 : x /∈ ⌊timepassε(ug)⌋k ∩ Z. Thus from Property 2.1,
⇒ ∃ε > 0 ∀y ∈ ⌊x⌋k : y /∈ timepassε(ug) ∩ Z ⊓⊔

Lemma 2.4. For any two closed zones Z1 and Z2,

Z1 ∩Nk(Z2) = ∅ ⇔ Z1 ∩ normk(timepass(Z2)) = ∅

Proof. The proof of “⇒” is immediate, as Nk(Z2) ⊇ normk(timepass(Z2)). The
proof of “⇐” is also obvious if Nk(Z2) = normk(timepass(Z2)).
When Nk(Z2) ⊃ normk(timepass(Z2)), we prove “⇐” as follows:
Z1, Z2 (and thus timepass(Z2), except for its “bottom”) are closed. For Nk(Z2) ⊃
normk(timepass(Z2)), it must be the case that Z2 is a k-zone, and so normk(timepass(Z2))
= timepass(Z2) is also closed (except for its “bottom”). Thus, in order for Z1 to
have an empty intersection with normk(timepass(Z2)), the two must be separated
by a (max. norm) distance of at least 1. It also follows that the only additions to
normk(timepass(Z2)) to form Nk(Z2) are the open diagonal borders (obtained by
relaxing the diagonal constraints of Z2 by 1). These borders thus added being open,
can at most touch, but not intersect Z1, which entails our result. ⊓⊔

Lemma 2.5. For any closed k-zone Z, for any ug ∈ Grid, any v ∈ R
n
≥0

v ∈ Z ∩Nk(ug)⇒ ∃vg ∈ (grid(v) ∩ Z ∩ normk(timepass(ug)))

16 2 Robustness of Closed Perturbed Timed Automata

Proof. ∃v ∈ Z ∩Nk(ug)
⇒ Z ∩Nk(ug) 6= ∅
⇒ Z ∩ normk(timepass(ug)) 6= ∅ [Lemma 2.4]
⇒ ∃vg ∈ (grid(v) ∩ Z ∩ normk(timepass(ug)))
[as closed zones always intersect in a grid-point, and from the definition of grid(v)]
⊓⊔

This means that any closed guard (Z, referring to Lemma 2.5) that is enabled
by a point (v) obtained by time-passage from a grid-point (ug) under the smallest
of drifts (and thus included into that point’s (ug’s) neighbourhood) is also enabled
by a different grid-point (vg) obtained by time-passage (without drift) from that
grid-point (ug).

Lemma 2.6. For any closed, diagonal-free k-zone Z, any x,u ∈ R
n
≥0,

u ∈ Z ∧ ∀ε > 0 : (⌊x⌋k ∩ timepassε(u) ∩ Z) 6= ∅
⇒ ∃ug ∈ grid(u) ∩ Z ∧ x ∈ Nk(ug) ∩ Z

The proof is immediate from Lemmas 2.3 and 2.5, and the definition of grid(u).

Definition 2.10. Let R∗
i be the reach-set at the i-th iteration, computed by modify-

ing the time-passage steps of the standard FRA algorithm as follows: the normk(timepass())
operator is replaced by its neighbourhood Nk(). R

∗
i is termed the corresponding ro-

bust reach-set.

Let R∗ be the robust reach-set that is ultimately computed by the FRA al-
gorithm by using Nk() instead of normk(timepass()), while computing the time-
passage successors of zones 4, and R be the reach-set that is computed by the
standard zone-based FRA (cf. Definition 2.6).
From Lemma 2.4, we get R∗ = {(l, Z ∪ (Nk(Z) ∧ Inv(l))) | (l, Z) ∈ R}, thereby
resulting in the following corollary:

Corollary 2.1. For any closed zone B and any l ∈ L,
R∗ ∩ (l, B) = ∅ ⇔ R ∩ (l, B) = ∅.

We now establish useful properties of the sets R∗
i through the following lemmas.

Lemma 2.7. Given any i ∈ N, any l ∈ L, and any x ∈ R
n
≥0,

(l,x) |= R∗
i ⇒ ∀ε > 0 ∃y ∈ ⌊x⌋k : (l,y) ∈ Reachε

i

Proof. We prove Lemma 2.7 by induction over i.

1. Base case i = 0 : The proof is immediate as
∀ε > 0 : R∗

0 = Reachε
0 = 〈(l0,0)〉

2. Induction Hypothesis: Assume that Lemma 2.7 holds for some i > 0

4 Termination is guaranteed for such an algorithm by the use of k-normalization
in the computation of the neighbourhood Nk() of zones encountered during the
FRA.

2.3 Robustness against drifting clocks under finite life-time 17

3. Induction Step: We prove that Lemma 2.7 holds for i+ 1. Now,
(l,x) |= R∗

i+1 ⇔ (l,x) |= R∗
i ∨ (l,x) |= Post(R∗

i)

• (l,x) |= R∗
i The proof follows from the Induction Hypothesis,

as Reachε
i ⊆ Reachε

i+1

• (l,x) |= Post(R∗
i)

– i even: ∃ug ∈ Inv(l) : (l,ug) |= R∗
i ∧ x ∈ Nk(ug) ∩ Inv(l) 5

a) : For ug ∈ k −Grid, we have:
∃ug ∈ Inv(l) ∀ε > 0 ∃y ∈ ⌊x⌋k : (l,ug) ∈ Reachε

i

∧ y ∈ timepassε(ug) ∩ Inv(l)
[Induction Hypothesis, as ⌊ug⌋k = ug for ug ∈ k −Grid, and using
Lemma 2.3]
⇒ ∀ε > 0 ∃y ∈ ⌊x⌋k : y ∈ Succ(Reachε

i)
⇒ ∀ε > 0 ∃y ∈ ⌊x⌋k : y ∈ Reachε

i+1

b) For ug /∈ k −Grid, Nk(ug) = normk(timepass(ug)) and thus
x ∈ Nk(ug)⇒ ∀ε > 0 ∀w ∈ ⌊ug⌋k ∃y ∈ ⌊x⌋k :
y ∈ timepassε(w).....(1) Thus,
∃ug ∈ Inv(l) : (l,ug) |= R∗

i ∧ x ∈ Nk(ug) ∩ Inv(l)
⇒ ∃w ∈ Inv(l) ∀ε > 0 ∃y ∈ ⌊x⌋k : (l,w) ∈ Reachε

i

∧ y ∈ timepassε(w) ∩ Inv(l)
[from Induction Hypothesis, Property 2.1, and (1) previously]
⇒ ∀ε > 0 ∃y ∈ ⌊x⌋k : y ∈ Succ(Reachε

i)
⇒ ∀ε > 0 ∃y ∈ ⌊x⌋k : y ∈ Reachε

i+1

– i odd: ∃t ∈ T ∃l′ ∈ L : l′
t→ l, ∃u ∈ Inv(l′) ∩G(t) : (l′,u) |= R∗

i

∧ x ∈ Inv(l) ∩Rest(u)
⇒ ∃t ∈ T ∃l′ ∈ L : l′

t→ l, ∃u ∈ Inv(l′) ∩G(t)
∧ ∀ε > 0 ∃w ∈ ⌊u⌋k : (l′,w) ∈ Reachε

i ∧ x ∈ Inv(l) ∩ Rest(u)
[Induction Hypothesis]

⇒ ∀ε > 0 ∃y ∈ ⌊x⌋k ∃t ∈ T ∃l′ ∈ L : l′
t→ l,∃w ∈ Inv(l′) ∩G(t)

: (l′,w) ∈ Reachε
i ∧ y ∈ Inv(l) ∩Rest(w)

[Property 2.1]
⇒ ∀ε > 0 ∃y ∈ ⌊x⌋k : y ∈ Succ(Reachε

i)
⇒ ∀ε > 0 ∃y ∈ ⌊x⌋k : y ∈ Reachε

i+1 ⊓⊔

Here, by (l,x) |= R∗
i , we mean that there exists a zone Z ∈ R∗

i such that x ∈ Z.
This lemma shows that the set R∗

i collects the regions that can be “touched” in
the sense of some (but not necessarily all) points within being reachable for every
perturbation.

Lemma 2.8. For any l ∈ L, any diagonal-free k-zone B, any i ∈ N,
R∗

i ∩ (l, B) 6= ∅ ⇒ ∀ε > 0 : Reachε
i ∩ (l, B) 6= ∅. 6

Proof. R∗
i ∩ (l, B) 6= ∅

⇒ ∃x ∈ B : (l,x) |= R∗
i

⇒ ∃x ∈ B ∀ε > 0 ∃y ∈ ⌊x⌋k : (l,y) ∈ Reachε
i [Lemma 2.7]

⇒ ∀ε > 0 ∃y ∈ B : (l,y) ∈ Reachε
i [Property 2.1]

⇒ ∀ε > 0 : Reachε
i ∩ (l, B) 6= ∅ ⊓⊔

5 Note that ug ∈ Grid
6 Here R∗

i ∩ (l, B) 6= ∅ denotes Z ∧B being satisfiable for some (l, Z) ∈ R∗
i .

18 2 Robustness of Closed Perturbed Timed Automata

The above lemma implies that at any iteration depth i, if the set R∗
i intersects

with a target state, then the corresponding perturbed reach-set under even the
smallest of perturbations likewise intersects with the target state.

Lemma 2.9. For any even i, l ∈ L, ug ∈ Grid ∩ Inv(l), v ∈ R
n
≥0,

(l,ug) |= R∗
i ∧ ∃l′ ∈ L ∃t ∈ T : l

t→ l′ ∧ v ∈ Nk(ug) ∩ Inv(l) ∩G(t)
⇒ ∃vg ∈ normk(timepass(ug)) ∩ grid(v) ∩ Inv(l) ∩G(t) :

∃wg ∈ (Inv(l′) ∩Rest(vg) : (l
′,wg) |= R∗

i+2

The proof is immediate from Lemma 2.5 and the definition of R∗
i . Here we assume,

in addition to the guards and invariants being closed and diagonal-free, the follow-
ing condition of admissible target locations, which ensures consistency between the
invariants of a location and the guards of the transitions entering and leaving that
location:
For any locations l and l′, and any transition t with l

t→ l′:
Inv(l) ∩G(t) 6= ∅ ∧ Inv(l′) ∩G(t) 6= ∅.

Lemma 2.10. For any even i, any l ∈ L, any x ∈ R
n
≥0,

∀ug ∈ Grid ∩ Inv(l) : (l,ug) |= R∗
i , x /∈ Nk(ug) ∩ Inv(l)

⇒ ∃εi > 0 ∀y ∈ ⌊x⌋k , ∀u ∈ Inv(l) : (l,u) ∈ Reach
εi
i :

y /∈ timepassεi(u) ∩ Inv(l)

We prove Lemma 2.10 by contraposition:

Contraposition of Lemma 2.10

For any even i, any l ∈ L, any x ∈ R
n
≥0,

∀ε > 0 ∃y ∈ ⌊x⌋k ∃u ∈ Inv(l) : (l,u) ∈ Reachε
i ∧ y ∈ timepassε(u) ∩ Inv(l)

⇒ ∃ug ∈ Grid ∩ Inv(l) : (l,ug) |= R∗
i ∧ x ∈ Nk(ug) ∩ Inv(l)

Proof. We prove by induction over even i

1. Base case i = 0 :The proof follows from Lemma 2.3, and as
∀ε > 0 : R∗

0 = Reachε
0 = 〈(l0,0)〉

2. Induction Hypothesis: Assume that (the contraposition of) Lemma 2.10 holds
for some i > 0

3. Induction Step: We show that (the contraposition of) Lemma 2.10 holds for
i+ 2. Now,
∀ε > 0 ∃y ∈ ⌊x⌋k ∃u ∈ Inv(l) : (l,u) ∈ Reachε

i+2

∧ y ∈ timepassε(u) ∩ Inv(l)
⇒ ∀ε > 0 ∃y ∈ ⌊x⌋k ∃l′ ∈ L ∃t ∈ T : l′

t→ l ∃v ∈ Inv(l′) :
(l′,v) ∈ Reachε

i ∃w ∈ timepassε(v) ∩ Inv(l′) ∩G(t)
∃u ∈ Rest(w) ∩ Inv(l) : y ∈ timepassε(u) ∩ Inv(l) [definition of Reachε

i]

⇒ ∀ε > 0 ∃y ∈ ⌊x⌋k ∃l′ ∈ L, ∃t ∈ T : l′
t→ l ∃vg ∈ Inv(l′) ∩Grid

: (l′,vg) |= R∗
i ∃w ∈ Nk(vg) ∩ Inv(l′) ∩G(t) ∃u ∈ Rest(w) ∩ Inv(l)

: y ∈ timepassε(u) ∩ Inv(l)
[Induction Hypothesis and Lemma 2.6]

⇒ ∃l′ ∈ L ∃t ∈ T : l′
t→ l ∃vg ∈ Inv(l′) ∩Grid : (l′,vg) |= R∗

i

2.3 Robustness against drifting clocks under finite life-time 19

∃wg ∈ normk(timepass(vg)) ∩ Inv(l′) ∩G(t) ∩Grid
∃ug ∈ Rest(wg) ∩ Inv(l) : x ∈ Nk(ug) ∩ Inv(l)
[From Lemma 2.5 and Lemma 2.9]
⇒ ∃ug ∈ Grid ∩ Inv(l) : (l,ug) |= R∗

i+2 ∧ x ∈ Nk(ug) ∩ Inv(l) ⊓⊔
A consequence is that the following converse of Lemma 2.7 also holds:

Lemma 2.11. Given any i ∈ N, any l ∈ L, and any x ∈ R
n
≥0,

(l,x) |6= R∗
i ⇒ ∃εi > 0 ∀y ∈ ⌊x⌋k : (l,y) /∈ Reachεi

i

Proof. 1. Base case i = 0: The proof is immediate as
∀ε > 0 : R∗

0 = Reachε
0 = 〈(l0,0)〉

2. Induction Hypothesis: Assume that Lemma 2.11 holds for some i > 0
3. Induction Step: We show that Lemma 2.11 holds for i+ 1. Now,

(l,x) |6= R∗
i+1 ⇔ (l,x) |6= R∗

i ∧ (l,x) |6= Post(R∗
i)

• i even: (l,x) |6= Post(R∗
i)⇒ ∀ug ∈ Grid ∩ Inv(l)

: (l,u) |= R∗
i x /∈ timepass(u) ∩ Inv(l)

⇒ ∃εi > 0 ∀y ∈ ⌊x⌋k ∀u ∈ Inv(l)
: (l,u) ∈ Reachεi

i y /∈ timepassεi(u) ∩ Inv(l) [Lemma 2.10]
⇒ ∃εi > 0 ∀y ∈ ⌊x⌋k : (l,y) /∈ Succ(Reachεi

i)—–(1)
Thus (l,x) |6= R∗

i+1 ⇒ (l,x) |6= R∗
i ∧ (l,x) |6= Post(R∗

i)

⇒ ∃δi > 0 ∀y ∈ ⌊x⌋k : (l,y) /∈ Reachδi
i

∧ ∃εi > 0 ∀y ∈ ⌊x⌋k : (l,y) /∈ Succ(Reachεi
i)

[Induction Hypothesis and the preceding (1)]
Let εi+1 = min{δi, εi}. As Reachε

i is downward closed w.r.t ε,
∃εi+1 > 0 ∀y ∈ ⌊x⌋k : (l,y) /∈ Reachεi+1

i+1

• i odd: (l,x) |6= Post(R∗
i)

⇒ ∀t ∈ T ∀l′ ∈ L : l′
t→ l ∀u ∈ Inv(l′) ∩G(t)

: (l′,u) |= R∗
i : x /∈ Inv(l) ∩Rest(ug)

⇒ ∀t ∈ T ∀l′ ∈ L : l′
t→ l ∀u ∈ Inv(l′) ∩G(t)

: ∀ε > 0 ∃w ∈ ⌊u⌋k : (l′,w) ∈ Reachε
i : x /∈ Inv(l) ∩Rest(u)

[Lemma 2.7]

⇒ ∀ε > 0 ∀y ∈ ⌊x⌋k ∀t ∈ T ∀l′ ∈ L : l′
t→ l ∀w ∈ Inv(l′) ∩G(t)

: (l′,w) ∈ Reachε
i : y /∈ Inv(l) ∩Rest(u) [Property 2.1]

⇒ ∀ε > 0 ∀y ∈ ⌊x⌋k : (l,y) /∈ Succ(Reachε
i)

Thus, (l,x) |6= R∗
i+1 ⇒ (l,x) |6= R∗

i ∧ (l,x) |6= Post(R∗
i)

⇒ ∃εi > 0 ∀y ∈ ⌊x⌋k : (l,y) /∈ Reachεi
i

∧ ∀ε > 0 ∀y ∈ ⌊x⌋k : (l,y) /∈ Succ(Reachε
i)

Let εi+1 = εi. It then follows that
∃εi+1 > 0 ∀y ∈ ⌊x⌋k : (l,y) /∈ Reachεi+1

i+1 ⊓⊔
Lemma 2.12. For any l ∈ L, i ∈ N, any diagonal-free k-zone B,

R∗
i ∩ (l, B) = ∅ ⇒ ∃εi > 0 : Reachεi

i ∩ (l, B) = ∅.
Proof. R∗

i ∩ (l, B) = ∅
⇒ ∀x ∈ B : (l,x) |6= R∗

i

⇒ ∀x ∈ B ∃εi > 0 ∀y ∈ ⌊x⌋k : (l,y) /∈ Reachεi
i [Lemma 2.11]

⇒ ∃εi > 0 ∀y ∈ B : (l,y) /∈ Reachεi
i [Property 2.1]

⇒ ∃εi > 0 : Reachεi
i ∩ (l, B) = ∅ ⊓⊔

20 2 Robustness of Closed Perturbed Timed Automata

The preceding lemma implies that at any iteration depth i, the set R∗
i does

not intersect with a target state iff there exists a strictly positive value of the per-
turbation, such that the corresponding perturbed reach-set at that iteration depth
likewise avoids the target state. The following corollary is then a direct consequence
of Lemmas 2.8 and 2.12.

Corollary 2.2. Given any l ∈ L, any diagonal-free k-zone B,
R∗ ∩ (l, B) = ∅ ⇔ ∀i ∈ N ∃εi > 0 : Reachεi

i ∩ (l, B) = ∅

Corollaries 2.1 and 2.2 lead us to the following theorem, which is a main result
of this chapter.

Theorem 2.1. Let R be the final reach-set computed by the standard zone-based
FRA, for a TA with closed and diagonal-free guards and invariants. Then for any
closed and diagonal-free k-zone B and any l ∈ L, R∩ (l, B) = ∅ ⇔ ∀i ∈ N ∃εi > 0 :
Reachεi

i ∩ (l, B) = ∅

It follows from this theorem that the standard zone-based FRA used in tools
like UPPAAL is exact (sound and complete) while testing TA with closed guards
and invariants for robust safety against closed targets.

The “⇐” part of Theorem 2.1 states that a closed target is reported as reachable
by standard zone-based FRA only if it is also reachable in a finite number of itera-
tions of the transition relation of the TA, under even the slightest of perturbations.
This result is intuitively obvious, because even the smallest perturbed reach-set is
a strict superset of its non-perturbed version. The “⇒” part of Theorem 2.1 states
that a closed target is reported as unreachable by zone-based FRA only if for any
given number of iterations i of the transition relation, there exists a strictly positive
value of the perturbation εi that the automaton can tolerate and yet remains safe,
in the sense that the corresponding perturbed reach-set Reachεi

i has an empty in-
tersection with the (closed) target state. It must be noted here that this does not
mean the existence of a homogeneous ε > 0 independent of the number of iterations,
for which the unsafe state can be avoided, which is the notion considered in related
works [Pur00, WDMR08, DK06, Dim07, JR11, KLMP14, San15]. Rather, as men-
tioned in this chapter’s introduction, the magnitude of the tolerated perturbation
εi could (but not necessarily) decrease with the number i of iterations, with εi po-
tentially tending to 0 as i tends to∞7. However, so long as we execute an arbitrary,
but finite number of iterations, we are guaranteed a positive value of the tolerable
perturbation for robust safety.

The analyses in [Pur00, WDMR08, DK06, Dim07], on the other hand, add states
that can be reached in any (unbounded) number of iterations through the (progress)
cycles of the automaton8, for even the slightest perturbation. Therefore, a state

7 For closed TA in which each cycle has at least one transition that resets all
clocks simultaneously, the robust reach-sets computed by the algorithms in
[Pur00, WDMR08, DK06, Dim07, JR11, KLMP14, San15] coincide with the stan-
dard reach-set computed by UPPAAL, as seen in the automaton of Fig. 2.1. Thus,
a certificate of safety by standard UPPAAL for such TA w.r.t. closed targets im-
plies a robust safety margin independent of iteration depth.

8 We make no assumption on the cycles of the automaton.

2.4 Robustness against drifting clocks under resynchronization 21

S
yn

c.

S
yn

ch
ro

ni
za

tio
n

(0, 0) ∆ ε 1 2 x

1

ε

∆

y

µ

Fig. 2.2. Periodic resynchronization resulting in a bound ε on relative drift between
clocks

(l,x) is considered to be robustly unreachable in our sense (i.e., not included in R∗),
but reachable in the sense of the works in [Pur00, dWDMR04, DK06, Dim07] iff
limε→0 min{i ∈ N | (l,x) ∈ Reachε

i } =∞.

2.4 Robustness against drifting clocks under
resynchronization

In the previous section, we considered a model of drifting clocks where the rela-
tive drift between the clocks increases without bound with the passage of time,
although the clock-slopes are themselves bounded according to the parameter ε.
This is, however, rarely the case in practice, where the clocks, though subject to
drift, are regularly resynchronized by diverse means, ranging from bit-stuffing in
communication protocols to high-level clock synchronisation schemes. A parameter
∆ characterizes the post-synchronization-gap and a parameter µ the longest possible
gap between synchronizations. If the slopes of the clocks (w.r.t absolute time) are in

the range
[

1
1+θ

, 1 + θ
]
between synchronizations, such a resynchronization enforces

a uniform bound given by

ε = max

(
∆+ µ

(
1

1 + θ

)2

, ∆+ µ(1 + θ)2
)

= ∆+ µ(1 + θ)2

on the relative drift between the clocks, irrespective of the extent of time-passage.
The phenomenon is illustrated for two clocks x and y in Fig. 2.2. Throughout this
section, we assume 0 < ε < 1.

We incorporate such a resynchronization into TA by associating a drift-offset
δ ∈ [−ε, ε]n for each clock valuation x ∈ R

n
≥0. This drift-offset keeps track of the

extent to which the individual clocks in x have deviated from an implicit reference
clock maintained by the synchronization scheme. The states of a TA in this semantics
are thus tuples (l,x, δ) ∈ L × R

n
≥0 × [−ε, ε]n. As the deviation δ is controlled by

22 2 Robustness of Closed Perturbed Timed Automata

the synchronization scheme such that it always remains below ε, the (perturbed)
time-passage under synchronization is as follows:

Definition 2.11. Given any x ∈ R
n
≥0, any δ ∈ [−ε, ε]n,

timepassεsync(x, δ) = {(x′, δ′) | δ′ ∈ [−ε, ε]n ∧ ∃d > 0 : x′ = x− δ + d+ δ
′}

A run of a perturbed TA subject to clock synchronization with accuracy ε is a
sequence 〈(l0,x0, δ0), (l1,x1, δ1), . . .〉 of states such that

1. l0 is the initial location and x0 = δ0 = 0,
2. For even i, li+1 = li, xi+1 ∈ Inv(li)
∧ (xi+1, δi+1) ∈ {(xi, δi)} ∪ timepassεsync(xi, δi)

9

3. For odd i, ∃ti ∈ T : li
ti→ li+1 : xi ∈ Inv(li) ∩G(ti),

xi+1 ∈ Inv(li+1) ∩Resti(xi), δi+1 = Resti(δi).

Due to memorizing the current deviation δ and adjusting it consistently to the
constraint that the overall accuracy is better than ε, this semantics is subtly more
constrained than the —superficially similar— semantics permitting an arbitrarily
directed ε-deviation upon every time passage.

SReachε is the corresponding perturbed reach-set, defined inductively as follows,
with SReachε

i denoting the perturbed reach-set in i ∈ N steps, starting from the
initial state (l0,0,0) and alternating between (perturbed) time-passage and (exact)
discrete-location transitions:

• SReachε
0 ≡ {(l0,0,0)}

• For i even, Succ(SReachε
i) = {(l,x, δ) | x ∈ Inv(l)

∧ ∃x′ ∈ Inv(l),∃δ′ ∈ [−ε, ε]n : (l′,x′, δ′) ∈ SReachε
i

∧ (x, δ) ∈ timepassεsync(x
′, δ′)}

• For i odd, Succ(SReachε
i) = {(l,x, δ) | ∃t ∈ T, l′ ∈ L : l′

t→ l,
∃x′ ∈ Inv(l′) ∩G(t) ∃δ′ ∈ [−ε, ε]n : (l′,x′, δ′) ∈ SReachε

i :
∧ x ∈ Inv(l) ∩Rest(x′) ∧ δ = Rest(δ

′)}
• ∀i ≥ 0, SReachε

i+1 = SReachε
i ∪ Succ(SReachε

i)
• SReachε =

⋃
i∈N

SReachε
i

As before, we assume that all guards and invariants are closed and diagonal-free. Let
Reach denote the reach-set obtained by considering perfectly synchronous clocks
(ε = 0), where Reachi denotes the reach-set at step i, as defined previously (cf.
Definition 2.6). We establish the relationship between the sets SReachε and Reach
through the following lemmas.

Lemma 2.13. For any i ∈ N, l ∈ L, x ∈ R
n
≥0, δ ∈ [−ε, ε]n,

(l,x, δ) ∈ SReachε
i ⇒ ∃xg ∈ grid(x) : (l,xg) ∈ Reachi

Proof. By induction over i.

1. Base case i = 0: The proof is immediate as SReachε
0 = {(l0,0,0)} and

Reach0 = {(l0,0)}
2. Induction Hypothesis: Assume that Lemma 2.13 holds for some i

9 By abuse of notation, the subscripts i here denote the sequence of tuples in a run,
and not individual vector components.

2.4 Robustness against drifting clocks under resynchronization 23

3. Induction Step: Let (l,x, δ) ∈ SReachε
i+1

⇒ (l,x, δ) ∈ SReachε
i ∨ (l,x, δ) ∈ Succ(SReachε

i)
• (l,x, δ) ∈ SReachε

i : The proof is immediate from the Induction Hypothesis,
as SReachε

i ⊆ SReachε
i+1 for all i.

• (l,x, δ) ∈ Succ(SReachε
i) and i even

⇒ ∃(l,x′, δ′) ∈ SReachε
i : (x, δ) ∈ timepassεsync(x

′, δ′) ∧ x ∈ Inv(l)
⇒ ∃x′

g ∈ Grid : (l,x′

g) ∈ Reachi

∧ ∃xg ∈ grid(x) ∩ Inv(l) : xg ∈ timepass(x′

g)
[Induction Hypothesis, definitions of grid(x), timepass(x′

g), and timepass
ε
sync(x

′, δ′),
and as Inv(l) is closed]
⇒ ∃xg ∈ grid(x) : (l,xg) ∈ Succ(Reachi)
⇒ ∃xg ∈ grid(x) : (l,xg) ∈ Reachi+1

• (l,x, δ) ∈ Succ(SReachε
i) and i odd:

⇒ ∃(l′,x′, δ′) ∈ SReachε
i , ∃t ∈ T : l′

t→ l, x′ ∈ Inv(l′) ∩G(t)
∧ x ∈ Inv(l) ∩Rest(x′) ∧ δ = Rest(δ

′)

⇒ ∃x′

g ∈ Grid : (l′,x′

g) ∈ Reachi, ∃t ∈ T : l′
t→ l

∧ x′

g ∈ Inv(l′) ∩G(t) ∧ ∃xg ∈ grid(x) ∩ Inv(l) ∩Rest(x′

g)
[Induction Hypothesis, definition of grid(x), and as Inv(l), Inv(l′), and G(t)
are closed]
⇒ ∃xg ∈ grid(x) : (l,xg) ∈ Succ(Reachi)
⇒ ∃xg ∈ grid(x) : (l,xg) ∈ Reachi+1 ⊓⊔

The following corollary is an immediate consequence.

Corollary 2.3. For any i ∈ N, it holds that:

sups∈SReachε
i
dist(s,Reachi) < 1 ,

where for s = (l,x, δ) ∈ SReachε
i , dist(s,Reachi) = inf(l,x′)∈Reachi

dist(x,x′).

Corollary 2.3 intuitively means that irrespective of the iteration depth i, the per-
turbed reach-set SReachε

i stays “close-enough” to the standard reach-set Reachi,
in the sense that even the “farthest” point in the perturbed reach-set is less than
unit distance away from the standard reach-set.

Lemma 2.14. For a TA with only closed and diagonal-free guards and invariants,
and any closed target location-zone pair of the form (l, B):

Reach ∩ (l, B) = ∅ ⇔ ∀0 < ε < 1 : SReachε ∩ (l, B) = ∅ ,
where SReachε ∩ (l, B) = ∅ denotes ∀(l,x, δ) ∈ SReachε : x /∈ B.

The proof of “⇐” is obvious as ∀ε > 0 : SReachε ⊃ Reach, in the following sense:
∀(l,x) ∈ Reach : (l,x,0) ∈ SReachε. The proof of “⇒” follows from Corollary
2.3, in conjuction with the fact that B is a closed zone, as are all the guards and
invariants of the TA, and 0 < ε < 1. This lemma, together with the soundness and
completeness result for standard zone-based FRA [BY04], leads us to the following
theorem, which is the second main result of this chapter:

Theorem 2.2. For a TA with only closed and diagonal-free guards and invariants,
any location l, and any closed, diagonal-free k-zone B :

24 2 Robustness of Closed Perturbed Timed Automata

R ∩ (l, B) = ∅ ⇔ ∀0 < ε < 1 : SReachε ∩ (l, B) = ∅ ,

where R is the symbolic reachable state-space that is ultimately computed by the
standard zone-based FRA.

Theorem 2.2 thus establishes the exactness of standard zone-based forward anal-
ysis using a tool like UPPAAL for TA with closed guards and invariants, when test-
ing for robust safety against closed targets, with drifting clocks subject to periodic
resynchronizations that enforce accuracy better than 1. A certification of robust
safety in this case implies that the target state could be avoided by all values of the
perturbation ε that are strictly less than 1, independent of the depth of iteration,
unlike the case for unbounded relative clock-drift that was considered in the previous
section.

2.5 Conclusion

We have investigated reachability in TA subject to drifting clocks – a phenomenon
that occurs in practical implementations of timed systems. We first considered the
model of clock-drift introduced in [Pur00], and analyzed the reachability for TA
with closed guards and invariants, but without the assumption of progress cycles, as
was made in [Pur00, WDMR08, DK06, Dim07, JR11, KLMP14, San15]. We showed
the exactness of the standard zone-based FRA of UPPAAL for such TA, under a
notion of robustness weaker than that in [Pur00, dWDMR04, DK06, Dim07, JR11,
KLMP14, San15], in the sense that we do not add states that require an unbounded
number of iterations in order to be reached, under infinitesimally small clock-drift (cf.
Theorem 2.1). Our notion is applicable to all systems having a finite life-time, where
for any particular projected life-time, an appropriate worst-case clock drift enforcing
behavior indistinguishable from the ideal can be chosen. For long life-times, the per-
missible clock drift may become extremely small. As technical realizations in many
systems (like, e.g., bit-stuffing in communication protocols or the central-master
synchronization incorporated in GPS-controlled systems) address this problem by
regular clock resynchronization, thus bounding the relative drift within an set of
clocks even over arbitrarily long life-times, we have also modelled and analyzed such
synchronization schemes. We have shown that the standard zone-based analysis of
UPPAAL is again exact while testing such models for robust safety, but now with
the assertion of a uniform strictly positive robustness margin of 1, independent of
system life-time.
Note that our definition of TA admits only diagonal-free constraints for the guards,
invariants, and targets. This is because TA with diagonal constraints of the form
x − y ⊲ c have been shown to be incompatible with forward reachability analysis
that employs standard k-normalization for termination, and a modified normaliza-
tion that takes into account the diagonal constraints of the TA is in fact necessary
for dealing with such cases [Bou04, BY04]. However, the techniques of this chapter
extend quite naturally to TA with diagonal constraints and a suitably modified nor-
malization operation. An extension of these techniques to Probabilistic TA [KNSS02]
(TA with discrete probability distributions annotating transitions between locations)
is considered in Chapter 6.

2.5 Conclusion 25

We finally wish to mention other works that investigate perturbations in TA
while addressing questions other than (symbolic) reachability analysis – [GHJ97]
imposes a topological closure on timed traces, which has been shown in [OW03] to
affect digitization of TA. [BMR06] considers robust model-checking of LTL proper-
ties, while [BMR08] considers robustness analysis via channel machines. The PhD
dissertation [San13] is a comprehensive body of work concerning implementability,
synthesis and game-theoretic analysis of (closed) TA w.r.t guard enlargement, while
[ABG+14] considers language theoretic questions arising in a network of TA with
independently evolving clocks.

3

(Un-)Decidability of Bounded

Multi-Priced Timed Automata

3.1 Introduction

The (un-)decidability frontier between TA, for which location reachability and re-
lated properties are decidable, and Linear Hybrid Automata (LHA) [ACH+95], for
which these properties happen to be undecidable, has been investigated through
analysis of various moderate extensions of the original TA framework. Some of these
extensions are interesting in their own right, as they provide valuable enhancements
to the expressiveness of the TA framework, thus enabling the analysis and optimiza-
tion of phenomena such as scheduling, which are beyond the scope of TA.

One such extension is that of Priced Timed Automata (PTA) or, synonymously,
Weighted Timed Automata [ABH+01, BFH+01, LBB+01] for modelling real-time
systems subject to some budgetary constraints on resource consumption. PTA have
-in addition to the real-valued clocks of classical TA - a cost-function mapping lo-
cations and edges to non-negative integers, whereupon a certain cost is incurred by
staying in a location, or by taking an edge. The minimum (infimum) cost reachability
problem for PTA computes the minimum (infimum) cost of reaching a given goal-
location. The minimum / infimum cost reachability problem for PTA has been shown
to be decidable and computable [ABH+01, BFH+01, LBB+01], leading to efficient
tool-support through UPPAAL CORA along with applications to real-time schedul-
ing [BLR]. A key factor for the decidability of location reachability in PTA is that the
cost variable is a monotonically increasing observer in the following sense: the cost
variable cannot be reset, and testing the cost is forbidden in both guards of edges
and invariants of locations, thereby restricting the expressive power of the model
wrt. LHA, or equivalently, wrt. Stop-Watch Automata (SWA) [HKPV98, CL00].
This preservation of decidability has attracted an immense amount of research on
PTA in recent years (see [BMR06] and Chapter 5 of [Bou09] for surveys), among
which we take a closer look at the following enhancements to the original LPTA
model:

• The optimum reachability problem is considered in [BBBR07] for PTA having a
single cost variable, with both positive and negative integer costs being allowed
on edges and locations. The optimality here refers to the computation of both
infimum and supremum cost, which is shown to be PSPACE-COMPLETE, with

3.1 Introduction 27

optimum paths of the underlying transition system consisting of time-transitions
occurring at time instants arbitrarily close to integers.

• The optimum (conditional) reachability problem for Multi-Priced Timed Au-
tomata (MPTA) with multiple cost variables is considered in [LR08], with only
non-negative costs being allowed on edges and locations. The decidability of the
minimum- and maximum- cost reachability problems is shown through exact
symbolic (zone-based) algorithms that are guaranteed to terminate. Termina-
tion of the symbolic algorithm for computing the maximum cost reachability is
subject to a divergence condition on costs, where the accumulation of each of the
costs diverges along all infinite paths of the underlying Multi-Priced Transition
System (MPTS).

• MPTA with both positive and negative costs are considered in [BMR08]. More
specifically, [BMR08] investigates Dual-Priced Timed Automata (DPTA) with
two observers (one observer termed as cost and the other as reward) in the
context of optimum infinite scheduling, where the reward takes on only non-
negative rates and is “strongly diverging” in the following sense: the accumulated
reward diverges along every infinite path in the underlying transition system of
the equivalent closed DPTA (obtained as usual by making all inequalities in
guards and invariants non-strict). There are no such restrictions on the cost
observer, which can take on both positive and negative values. Optimum infinite
schedules (that minimize or maximize the cost/reward ratio) are shown to be
computable for such DPTA via corner-point abstractions.

Nevertheless, an exact characterization of the conditions for (un-)decidability
and computation of the optimum reachability problems for MPTA having both posi-
tive and negative costs have remained unclear. We therefore attempt here to bridge
the gap between the results of [BBBR07] and [LR08] by formulating conditions for
(un-)decidability and computatibility wrt. the optimum reachability problems for
such MPTA, through the following contributions:

1. We first show that Stopwatch Automata (SWA) [Č92, HKPV98] can be encoded
using MPTA with two cost variables per stopwatch, allowing both positive and
negative costs on edges and locations, with each of the costs being subject to
individual upper and lower bounds that are to be respected along all viable paths
of the underlying transition system. Since location reachability is undecidable in
SWA with just one stop-watch, an immediate consequence of such an encoding
is that even location reachability becomes undecidable for DPTA with two cost
variables, admitting both postive and negative costs in locations and edges.
Moreover, this undecidability result holds even when no costs are charged upon
taking edges.

2. We then consider MPTA with both positive and negative costs on locations and
edges, with individual bounds on each cost variable, and restrict the underlying
MPTS such that a minimum absolute cost is incurred along all quasi-cyclic
viable paths. Under such a restriction, we show that the reachability problem
is decidable and that the optimum cost is computable for such MPTA. These
results are derived from a reduction of the optimum reachability problem to the
solution of a linear constraint system representing the path conditions over a
finite number of viable paths, with the finiteness here being obtained from the
boundedness and the (quasi-)cycle conditions on the costs.

28 3 (Un-)Decidability of Bounded Multi-Priced Timed Automata

Our contributions may thus be viewed as an additional step towards the precise
characterization of the (un-)decidability frontiers between various semantic models
for richer classes of real-time systems.

The remainder of this chapter is organized as follows: Section 3.2 introduces
MPTA and MPTS. Section 3.3 illustrates the encoding of SWA through MPTA
admitting both positive and negative (bounded) costs in locations / edges, thereby
demonstrating that even location reachability is undecidable for such MPTA with
as few as two cost variables. Section 3.4 describes the computation of optimum cost
for MPTA with both positive and negative costs in locations and edges, but subject
to the cost boundedness and (quasi-)cycle conditions mentioned above. Section 3.5
concludes the chapter. This chapter is a revision of the publication [3], with updated
references to the literature that has appeared since its publication.

3.2 Multi- Priced Timed Automata (MPTA)

Given a finite set C of clocks, a clock valuation over C is a map v : C → R≥0 that
assigns a non-negative real value to each clock in C. If n is the number of clocks, a
clock valuation is basically a point in R

n
≥0, which we henceforth denote by u,v etc.

Definition 3.1. A zone over a set of clocks C is a system of constraints defined by
the grammar g ::= x ⊲ d | x − y ⊲ d | g ∧ g, where x, y ∈ C, d ∈ N, and ⊲ ∈ {<,≤
, >,≥}. The set of zones over C is denoted Z(C).

A closed zone is one in which ⊲ ∈ {≤,≥}, and we denote the set of closed zones over
C by Zc(C). A zone with no bounds on clock differences (i.e., with no constraint of
the form x− y ⊲ d) is said to be diagonal-free, and we denote the corresponding set
of zones by Zd(C). The set Zcd(C) denotes zones that are both closed and diagonal-
free. The set ZcdU (C) denotes the set of closed, diagonal-free zones having only upper
bounds on the clocks.

Definition 3.2. An MPTA is a tuple A = (L,C, (l0,0), E, I,P), with

• a finite set L of locations and a finite set C of clocks, with |C| = n.
• An initial location l0 ∈ L together with the initial clock-valuation 0 where all

clocks are set to 0.
• a set E ⊆ L × Zcd(C) × 2C × L of possible edges between locations. An edge

e = (l, g, Y, l′) between two locations l and l′ is denoted l
e−→ l′, and involves a

guard g = G(e) ∈ Zcd(C), a reset set Y = Rese ⊆ C.
• I : L→ ZcdU (C) assigns invariants to locations
• P is an indexed set of prices {p1, . . . , pn′} where each pi : (L ∪ E)→ Z assigns

price-rates to locations and prices (or costs) to edges

In the sequel, we will denote by m the clock ceiling of the MPTA A under investi-
gation, which is the largest constant among the clock constraints of A. For ease of
presentation, we assume that the guards and invariants of the automaton are closed
and diagonal-free zones. We further assume that the clock-values are upper-bounded
bym through the invariants at each location. These are not real restrictions, as every
(P)TA can be transformed into an equivalent bounded and diagonal-free one (as in

3.2 Multi- Priced Timed Automata (MPTA) 29

Section 5.3 of [BBBR07]). Boundedness likewise does not confine the expressiveness
of Stop-Watch Automata discussed in the next section.

The concrete semantics of such an MPTA is given by a corresponding Multi-
Priced Transition System (MPTS) with states (l,u) ∈ (L,Rn

≥0) where u |= I(l),
with initial state (l0,0), and a transition relation → defined as follows:

• Time-transitions: (l,u)
δ,c−→ (l,v) if c = P(l) · δ and ∀0 ≤ t ≤ δ : u + t |= I(l)

where u+ t denotes the addition of t to each component of u.
• Switch-Transitions: (l,u)

e,c−→ (l′,v) if ∃e = (l, g, Y, l′) ∈ E : u |= g,v = [Y ←
0]u , v |= I(l′), c = P(e)

Definition 3.3. A canonical initialized path [BBBR07] π of an MPTS is a (possibly
infinite) sequence of states si (each state si being a location-plus-clock-valuation pair
of the form (l,u)), which starts from the initial state and alternates between time-

and switch-transitions π = s0
δ,c0−→ s1

e1,c
1

−→ s2 The set of all possible canonical
initialized paths is denoted Π. For a finite path π ∈ Π of length |π| = k, its ac-
cumulated cost-vector is defined as: Cost(π) =

∑k−1
i=0 ci, with the summation here

being performed component-wise for each cost-vector ci, with Costj(π) =
∑k−1

i=0 c
i
j

for each cost-component.
For π ∈ Π, let πk denote its finite prefix of length k. Then the corresponding

accumulated cost along π is given by Cost(π) = limk→∞Cost(πk), if the latter
exists.

The accumulated cost of π ∈ Π wrt. a (set of) goal state(s) G is defined as:

CostG(π) =

{
∞ if ∀i ≥ 0 : si /∈ G ,∑k

i=0 c
i if ∃k ≥ 0 : (sk ∈ G ∧ ∀i < k : si /∈ G) .

CostG(π) for π ∈ Π therefore yields the accumulated cost-vector along the
shortest prefix of π ending in a goal state.

Cost-Boundedness Constraint.

We assume in this chapter that the permissible cost charging is bounded by bud-
getary constraints, in the sense that paths of the MPTS exceeding this budget (e.g.,
exhausting the battery capacity) are considered unviable and thus irrelevant to the
optimization problem, even if the budget is exceeded only temporarily. The bud-
getary constraint is given formally as follows: For each cost variable, there is a lower
bound Lj ∈ Z≤0 and an upper bound Uj ∈ Z≥0 which all viable paths have to obey
throughout. Thus, a path π is called viable iff

∀π′ non-empty canonical prefix of π : ∀j ∈ {1, . . . , n′} : Lj ≤ Costj(π′) ≤ Uj

holds.
We further designate Ω as the linear objective function that we wish to optimize

wrt. reaching a set of goal locations under such budgetary constraints. Ω can be an
arbitrary linear combination of prices drawn from P. The objective of this chapter is
to formulate the conditions for (un-)decidability of reaching G under the budgetary
constraints and for computatibility of the minimum value of Ω when viably reaching
G. We call the latter the optimum-cost reachability problem, formally given below.

30 3 (Un-)Decidability of Bounded Multi-Priced Timed Automata

Problem 3.1. Given an MPTA A = (L,C, (l0,0), E, I,P) having a set Π of canon-
ical initialized paths in its corresponding MPTS, and given a set G ⊆ L of goal loca-
tions plus a linear objective function Ω, as well as budgetary constraints (Lj , Uj) for
the accumulation of each cost function pj along all viable paths in Π, the optimum-
cost reachability problem is to compute

min{Ω(CostG(π)) | π ∈ Π,π viable} .

Note that as Ω is an arbitrary linear combination of the prices accumulated in A,
this problem — despite being formulated as a minimization problem — incorporates
maximum-cost reachability also.

MPTA having two cost variables only are termed Dual-Priced Timed Automata
(DPTA) in the remainder. We now proceed to show in Section 3.3 that DPTA
with a boundedness condition on costs as above can be used to encode Stop-Watch
Automata (SWA) with one stopwatch, for which even location reachability is un-
decidable [HKPV98]. It therefore follows that Problem 3.1 is undecidable for such
cases. We however show in Section 3.4 that Problem 3.1 is decidable and computable
even for MPTA when one imposes suitable conditions on viable quasi-cyclic paths
of the corresponding MPTS.

3.3 Encoding of Stop-Watch Automata using
Bounded MPTA

Stopwatch automata (SWA) are an extension of timed automata where advance
of individual clocks can be stopped in selected locations. It has been shown in
[Č92, HKPV98] that location reachability is undecidable even for simple SWA (in
the sense of all clock constraints being diagonal-free), and even when both the clocks
and the stopwatches are confined to bounded range. The result, which is based on
encoding two-counter machines, applies to SWA as small as a single stopwatch and
four clocks. In the sequel, we will provide an encoding of stopwatch automata with
n bounded clocks and n′′ bounded stopwatches by MPTA with n + 1 clocks and
2n′′ cost variables. This shows that location reachability is undecidable for bounded
dually priced 5-clock MPTA.

As it suffices for our undecidability result, and as the generalization is straight-
forward, we demonstrate our reduction on 1-stopwatch SWA only. Let m ∈ N be a
common upper bound on all clocks C = {x1, . . . , xn} and the single stopwatch sw
occurring in the SWA A, i.e. m dominates the individual range bounds on clocks
and sw . We construct an MPTA with two cost variables s and S, both with bounded
range [0, 2m], and n+ 1 (bounded) clocks C ∪ {h}, where h is a fresh helper clock.
W.l.o.g, we assume that the SWA A to be encoded does not contain guard conditions
on its stopwatch, as these can always be replaced by invariants imposed in urgent
transient states.

The central idea of the encoding is that s watches the lower bounds while S
watches the upper bounds imposed on sw . Therefore,

1. the prices s and S do generally evolve with the same rate as the stopwatch sw
they simulate,

3.3 Encoding of Stop-Watch Automata using Bounded MPTA 31

2. s ≤ S holds throughout,
3. when sw is subject to an invariant imposing a lower bound of l ≥ 0 then

s = sw − l,1
4. when sw is subject to an invariant imposing an upper bound of u ≤ m then

S = sw + 2m− u.
Note that maintaining properties 3 and 4 leads to the bound [0, 2m] on s and S
enforcing the original invariant on sw , as s = sw − l ∧ s ≥ 0 implies sw ≥ l and
S = sw + 2m − u ∧ S ≤ 2m implies sw ≤ u. Thus, the general bounds on s and S
enforce the invariants on sw without any need for explicit invariants on s and S. All
that has to be done is to, first, initialize s and S such that 3 and 4 hold, which is
achieved by replacing the initial state by two states as in Fig. 3.1 and, second, update

(s, S, x1, . . . , xn) = 0

true/∅
ps = −l,

pS = 2m− u

S = 2m− u
(x1, . . . , xn) = 0

s = −l,

(sw , x1, . . . , xn) = 0

invc∧
sw ∈ [l, u]
dsw
dt

= a

invc

ps = a

pS = a

h = 0

l0 l0

Fig. 3.1. Initializing the cost variables s and S simulating the stopwatch such that
they enforce the invariant on the stopwatch sw . Here and in the remainder, invc (as
well as inv ′

c) refers to the parts of the invariant not dealing with the stopwatch. a
is the slope of the stopwatch in l0, which can be 0 or 1. Here and in all subsequent
figures, formulae in shaded boxes are not part of the automaton, but collect invariant
properties of the MPTS guaranteed along simulating runs.

them accordingly upon a change of the invariant mediated by a location change in
the SWA, which is shown in Fig. 3.2. Note that in both cases in accordance with
property 1, the cost rates ps and pS coincide to the slope a of sw .

Resetting the stopwatch requires a slightly more complex construction, as we
need to force s to value 0 (assuming that the invariant of the location following
the reset does not enforce a lower bound on the just reset stopwatch, which would
render the switch transition infeasible) and S to value 2m−u′, where u′ is the upper
bound on sw in the target location of the resetting switch transition. To achieve this,
we simulate the (instantaneous) switch transition by a run of duration 2m. Within
this run, we let s and S run to value m, which we test by substracting −2m in a
subsequent switch transition. We then adjust the values as desired. Furthermore,
we employ the wrapping automaton construction of [Č92, HKPV98] to preserve the
clock values. The complete automaton fragment is depicted in Fig. 3.3.

1 Note that whenever there is no explicit invariant enforcing a stronger lower bound,
sw still is subject to the invariant sw ≥ 0. Moreover, sw is always subject to an
upper bound as it is generally confined to the range [0,m]. The invariants s ≥ 0
(uniform over all locations) and sw ≥ l mutually reinforce each other.

32 3 (Un-)Decidability of Bounded Multi-Priced Timed Automata

g/R,
with sw 6∈ R

invc∧
sw ∈ [l, u]
dsw
dt

= a

li

lj

inv ′
c∧

sw ∈ [l′, u′]
dsw
dt

= a′

g/R,

invc

ps = l − l′, pS = u− u′

li

ps = a

pS = a

inv ′
c

lj

ps = a′

pS = a′

(sw , x1, . . . , xn) = (t0, . . . , tn)

↼
sw= sw = t0 + aδ ≤ u
(x1, . . . , xn) = Rδ(t1, . . . , tn)

(x1, . . . , xn) = (t1, . . . , tn)
S = t0 + 2m− u
s = t0 − l

↼
s= t0 − l + aδ

S = t0 + 2m− u′ + aδ

↼

S= t0 + 2m− u+ aδ
s = t0 − l′ + aδ

(x1, . . . , xn) = Rδ(t1, . . . , tn)

Fig. 3.2. Implementing change of invariant on the stopwatch in case the stopwatch
is not reset by the switch transition. W.l.o.g., we assume that the guard g does not

mention the stopwatch, as the pertinent conditions can be moved to invariants.
↼
x

denotes the value of x before the transition while x denotes its value thereafter. δ
represents the time spent in li and Rδ(t1, . . . , tn) abbreviates the result of applying
the reset R to (x1, . . . , , xn) = (t1 + δ, . . . , tn + δ).

Glueing together the above MPTA fragments at the like-named locations, one
obtains an MPTA which is equivalent to the encoded SWA wrt. location reachability.
Due to the undecidability of location reachability for SWA [Č92, HKPV98], this
reduction yields the following result:

Theorem 3.1. Location reachability is undecidable for MPTA with n ≥ 1 clocks and
max(2, 14 − 2n) bounded cost variables. In particular, it is undecidable for MPTA
with 6 clocks and 2 bounded cost variables, as well as for 1 clock and 12 bounded
cost variables.

Proof. The invariance properties mentioned in the shaded boxes in Figures 3.1 to
3.3, which are straightforward to establish based on the semantics of stopwatch
automata and MPTA, show that the stopwatch automaton A has a path reaching
location li with clock readings (x1, . . . , xn) = (t1, . . . , tn) and stopwatch reading t0
iff the encoding MPTA M has a viable path reaching location li with the same
clock readings (x1, . . . , xn) = (t1, . . . , tn) and costs s = t0 − l and S = t0 + 2m− u.
Hence, A can reach a given target location ltarget iff M can reach the corresponding
location.

According to [Č92, HKPV98], location reachability is undecidable for simple
SWA with bounded clocks and stopwatches. The reduction to two-counter machines

3.3 Encoding of Stop-Watch Automata using Bounded MPTA 33

x1 = m/{x1}

xn = m/{xn}

.

.

.

x1 = m/{x1}

xn = m/{xn}

.

.

.

x1 = m/{x1}

xn = m/{xn}

.

.

.h = 2m/∅,

pS = a

ps = a
ps = 0,
pS = 0

. . . xn ≤ m
x1 ≤ m∧

ps = 0
pS = 1

. . . xn ≤ m
x1 ≤ m∧

ps = 1
pS = 0

. . . xn ≤ m
x1 ≤ m∧

ps = −l′,
pS = 2m− u′

pS = a′
ps = a′

↼
s= s = t0 + aδ − l ≥ 0
(x1, . . . , xn) = Rδ(t1, . . . , tn)

↼

S= S = t0 + aδ + 2m− u ≤ 2m

h = 0

↼
s −2m = s ≥ 0,

↼
s≤ 2m (†)

(x1, . . . , xn) = wrap(Rδ(t1, . . . , tn) + h)

↼

S= S = 0

↼
s= s = t0 + aδ − l
(x1, . . . , xn) = wrap(Rδ(t1, . . . , tn) + h)

↼

S −2m = S ≥ 0,
↼

S≤ 2m (∗)

dsw
dt

= a

sw ∈ [l, u]

(sw , x1, . . . , xn) = (t0, . . . , tn)

(x1, . . . , xn) = (t1, . . . , tn)
s = t0 − l, S = t0 + 2m− u

invc g/R ∪ {h},

li

ps = 0, pS = 0

true/∅,

ps = 0, pS = −2m

ps = 0, pS = 0

true/∅,

ps = −2m, pS = 0

pS = 0
ps = 0

inv
′
c

lj

(x1, . . . , xn) = wrap(Rδ(t1, . . . , tn) + h)

↼

S= S = t0 + aδ + 2m− u+ h ≤ 2m

↼
s= s = t0 + aδ − l

invc∧

inv
′
c∧

sw ∈ [l′, u′]

(
↼
x 1, . . . ,

↼
xn) = (t0 + δ, . . . , tn + δ)

sw = 0
(x1, . . . , xn) = Rδ(t1, . . . , tn)

↼
sw= t0 + aδ ≤ u

li

dsw
dt

= a′

lj

g/R ∪ {sw}

s = −l′, S = 2m− u′

h = 2m
(x1, . . . , xn) = wrap(Rδ(t1, . . . , tn) + h) = (t1, . . . , tn)

ps = 0, pS = 0

Fig. 3.3. Resetting the stopwatch, i.e. setting s = −l and S = 2m − u′ while
preserving the clocks. Here, wrap(x) := x − m⌊ x

m
⌋. Note that (∗) and (†) imply

S = 0 and s = 0.

used in their proof yields SWA with five clocks and one stopwatch. As clocks are
special cases of stopwatches, location reachability is thus undecidable for SWA with
n ≥ 0 clocks and max(1, 6−n) stopwatches. Our reduction encodes such SWA by a
bounded MPTA with n ≥ 1 clocks and max(2, 14− 2n) bounded prices. ⊓⊔

An immediate consequence is

Corollary 3.1. Optimum cost is not effectively computable for bounded MPTA.

Proof. As the optimum cost is infinite iff the target location is unreachable, comput-
ing the optimum cost entails solving the reachability problem, which is undecidable
for bounded PTA with more than one price according to Theorem 3.1. ⊓⊔

34 3 (Un-)Decidability of Bounded Multi-Priced Timed Automata

Note that these results can easily be strengthened wrt. the operations permitted on
costs:

Corollary 3.2. Location reachability remains undecidable and optimum cost uncom-
putable even if no costs can be charged on edges.

Proof. It is straightforward to simulate an instantaneous price update by a dura-
tional update of fixed duration and slope using the wrapping construction to retain
the clock values. ⊓⊔

When interpreting the above negative results concerning effectiveness, it should
be noted, however, that the encoding relies crucially on closedness as well as on the
universally binding character of the budgetary constraints. It is currently unclear
whether similar undecidability results hold under an open (in the sense of strict
bounds on the cost) budget or the permission to temporarily overdraw the budget
by small amounts.

3.4 Optimum Cost Reachability for MPTA
under Cost-Charging Quasi-Cycles

In this section, we investigate the optimum cost problem for bounded MPTA subject
to the additional assumption that non-trivial cost is charged upon each quasi-cyclic
viable path, where a quasi-cycle is a sequence of states returning close to its origin.
This property is captured by the following definition:

Definition 3.4. We call an MPTA cost-charging on quasi-cycles if there exists ε > 0

such that for each canonical viable path π = s0
δ0,c

0

−→ s1
e1,c

1

−→ s2 . . .
δi,c

i

−→ si with
d(s0, si) ≤ ε and path-length i ≥ 2, i.e. the path contains at least one jump, it holds
that |Costk(π)| ≥ ε for some cost-component. I.e., the MPTA is cost-charging on
quasi-cycles iff there is no infinitesimally cheap return to a close vicinity of a state
once this vicinity has been left.

Hereby, we define the distance d((l,u), (l′,u′)) between two states (l,u) and (l′, u)
to be

d((l,u), (l′,u′)) =

{
∞ if l 6= l′,

||u− u′|| if l = l′,

where || · || is the maximum norm.

Note that we neither demand a constant sign for the cost incurred nor fix the cost
variable that incurs non-trivial cost upon quasi-return. Hence, some cost variable
may well incur cost ε on some path from (l,u) to some (l,u′) in its ε-vicinity and
cost −ε on the same or another cost variable when proceeding from (l,u′) to another
(l,u′′) in the ε-vicinity of (l,u′).

Nevertheless, together with compactness of the state space as implied by bound-
edness, cost-charging on quasi-cycles is strong enough a condition of finiteness on
all viable, i.e. bound-respecting, paths. 2

2 Note that any constant bound δ(ε) > 0 suffices as a minimum lower bound on the
absolute cost incurred along quasi-cyclic paths in order to obtain the finiteness
condition. We have however chosen a single parameter ε for ease of presentation.

3.4 Optimum Cost Reachability for MPTA under Cost-Charging Quasi-Cycles 35

Lemma 3.1. Let A be a bounded MPTA which is cost-charging on quasi-cycles.
Then the length of canonical viable paths in A is finitely bounded.

Proof. Let ε > 0 be the constant from Def. 3.4. Let L be the set of locations and
{x1, . . . , xn} be the set of clocks in A and let Di for i = 1, . . . , n be their respective
bounded domains. Let {p1, . . . , pn′} be the set of cost variables in A and let Pi for
i = 1, . . . , n′ be their respective bounded domains. As the domains are bounded, the

topological closure V of the combined clock-and-cost space V =
∏n

i=1Di×
∏n′

j=1 Pj

is compact. Hence, V can only contain finitely many ε-separated points.
Let k be an upper bound on the maximum number of ε-separated points in V .

Let π = s0
δ0,c

0

−→ s1
e1,c

1

−→ s2 . . .
δK ,cK−→ sK be a viable canonical path and let Ci =∑i

j=0 c
i be the accumulated costs until step i. As A is cost-charging on quasi-cycles,

||ui − uj || ≥ ε ∨ ||Ci −Cj || ≥ ε, which is equivalent to ||(ui,Ci) − (uj ,Cj)|| ≥ ε,
for each i, j ≤ K with li = lj . As (ui,Ci) ∈ V for each i ≤ K, it follows that
∀l ∈ L : |{(li, ui, Ci) | i ≤ K ∧ li = l}| ≤ k. Consequently, K ≤ k · |L| holds for the
length K of the canonical viable path π. ⊓⊔

Given the fact expressed in Lemma 3.1 that all canonical viable paths have a
uniform finite bound on their lengths, a consequence is that the optimum reacha-
bility problem for MPTA becomes an instance of bounded model-checking (BMC)
[BCC+03] that is solvable for a rich class of hybrid systems. In particular, we encode
the optimum bounded reachability problem up to depth k for MPTA as a Mixed
Integer Linear Program (MILP). In the remainder of this section, we provide a cor-
responding algorithm, which is based upon reducing Problem 3.1 for cost-charging
MPTA to a Mixed Integer Linear Program, along the lines of [PSE03] illustrating
BMC for acyclic LPTA.

This MILP will then be used twofold: First, as it expresses feasibility of a path
of length k, versions with increasingly larger k will be used to determine the upper
bound K on path length. Once this has been found, a version of depth K equipped
with the cost term as an objective function will be used for determining the optimum
cost.

Given an MPTA A = (L,C, (l0,0), E, I,P), a set G ⊆ L of goal-locations, and
an arbitrary linear combination Ω of prices, we generate the following MILP for the
BMC problem of depth k:

• For each discrete location l ∈ L we take k + 1 zero-one variables li, where each
li takes on either of the values 0 or 1, with 0 ≤ i ≤ k. The value of li encodes
whether A is in location l in step i as follows: li = 1 iff A is in location l in step
i. Thus, for any i ≤ k, there should be exactly one l ∈ L such that li = 1, which
can be enforced by requiring

∑
l∈L l

i = 1 in the MILP for each i ∈ {0, . . . , k}.
• For each edge e ∈ E we take k zero-one variables ei, with 1 ≤ i ≤ k. The

value of ei encodes whether A’s ith move in the run was transition e. Again, one
enforces that exactly one transition is taken in each step by adding the constraint∑

e∈E l
i = 1 in the MILP for each i ∈ {1, . . . , k}.

• For each clock c ∈ C we take k real-valued variables ci, with 0 ≤ i ≤ k− 1. The
value of ci encodes c’s value immediately after the ith transition in the run.

• For each i ≤ k we take one real-valued variable δi representing the time spent
in the ith location along the run.

36 3 (Un-)Decidability of Bounded Multi-Priced Timed Automata

• We add constraints describing the initial state, i.e. enforcing l00 = 1 and c0 = 0
for each c ∈ C.

• We add constraints describing the relationship between discrete locations and
transitions, i.e. guaranteeing that ei = 1 implies li−1 = 1 and l̃i = 1 for (l, l̃) ∈ e.
This can be encoded as a linear constraint via

li−1 ≥ ei ∧ li ≥ ei .

• We add constraints enforcing the location invariants, i.e. checking for each i ≤ k
that li = 1 =⇒ I(li)[ci1, . . . , c

i
n/c1, . . . , cn] and that li = 1 =⇒ I(li)[ci1 +

δi, . . . , cin + δi/c1, . . . , cn], where c1, . . . , cn are the clocks (i.e., {c1, . . . , cn} = C)
and φ[y/x] denotes substitution of y for x in φ.
As all clocks are bounded by m, the implications can be realized using the switch
variable encoding. E.g., for an upper bound x ≤ u in the invariant,m·li+xi+δi ≤
m+ u implements the implication li = 1 =⇒ xi + δi ≤ u.

• Using the same encoding, we add constraints enforcing guards, i.e. guaranteeing
for each 0 ≤ i ≤ k − 1 that

ei+1 = active =⇒ g(e)[ci1 + δi, . . . , cin + δi/c1, . . . , cn] ,

where g(e) denotes the guard of edge e.
• We add constraints dealing with resets, i.e. enforcing for each 0 ≤ i ≤ k− 1 that

ei+1 = active =⇒
{
ci+1 = ci + δi iff c /∈ Y (e) ,
ci+1 =0 iff c ∈ Y (e) ,

where Y (e) is the reset map associated to edge e.
• For each price variable p ∈ P, we define k+1 auxiliary variables pit recording the

step price incurred by p in step i ≤ k and k + 1 auxiliary variables pid recording
the price incurred by staying in the location during step i ≤ k. Using the switch
variable encoding, we enforce

∧

l∈L

k∧

i=0

li = 1 =⇒ pid = p(l) · δi

and

p0t = 0 ∧
∧

e∈E

k∧

i=1

ei = 1 =⇒ pit = p(e) ,

where p : E ∪ L→ Z is the cost assignment of A.
• Adding k further variables pi for each price p ∈ P , we can record the price Costp

accumulated so far by defining

p0 = 0 ,

pj+1 = pj + pjd + pjt

for each j < k. Viability of the paths is enforced by additionally demanding

Lp ≤ pj ≤ Up ,

Lp ≤ pj + pjd ≤ Up

for each j ≤ k.

3.5 Conclusion and future research 37

This encoding, which is a standard MILP encoding suitable for bounded model-
checking, can now be used in two ways:

1. For checking whether viable paths of length k exist, the above system is simply
build for the desired depth k and checked for feasibility using an MILP solver.
The resulting MILP is feasible iff paths of length ≥ k exist.

2. For determining the minimum cost for reaching the goal states within k steps,
we, first, modify the goal states to become sinks by decorating them with cost-
free and always enabled loops, second, build the above constraint system to
depth k, third, add constraints enforcing the goal-locations to be visited by
constraint

k∑

i=0

∑

l∈G

li ≥ 1

and, finally, use the linear expression

Ω[Pk/P]

as an objective function to be minimized by the MILP solver. The MILP solver
will either report the system to be infeasible, in which case the minimum cost
of reaching G along canonical initialized paths of length at most k is infinite, or
it will report the minimum cost of reaching G along canonical initialized paths
of length at most k as the optimum value of its objective function. An optimum
path can then be retrieved from the variables in the MILP that represent the
MPTA state at the various steps.

Combining these two steps, we can solve Problem 3.1, i.e. the optimum-cost
reachability problem, effectively by iteratively performing step 1 for increasing k
until no viable path of length k∗ exists and then performing step 2 for
k∗ − 1. Based on this procedure, we obtain the following positive result concerning
effectiveness of cost optimal reachability in MPTA:

Theorem 3.2. For bounded MPTA A which are cost-charging on quasi-cycles, the
following two properties hold:

1. It is decidable whether A has a viable (i.e. obedient to the budgetary constraints)
initialized path to some goal state.

2. The optimum cost for A reaching a goal state via a viable initialized path is
computable for any linear cost function. ⊓⊔

3.5 Conclusion and future research

We have investigated conditions for (un-)decidability and computability of the op-
timum reachability problem for MPTA admitting both positive and negative costs
on locations and edges. Our encoding of SWA using cost-bounded MPTA however
critically depends on the fact that the bounds on the cost variables are closed (i.e.,
non-strict), and that these bounds are to be respected for each cost variable along all
viable paths of the underlying transition system. The question of whether this unde-
cidability result holds even when cost bounds are strict, or when some path is allowed
to temporarily overshoot the budget wrt. a cost variable, or when subject to other

38 3 (Un-)Decidability of Bounded Multi-Priced Timed Automata

forms of budgetary constraints (as motivated, for instance, in [BFL+08, BLM14])
remains currently open. Moreover, given that the undecidability result for cost-
bounded MPTA holds for n ≥ 1 clocks and max(2, 14− 2n) bounded cost variables
(cf. Theorem 3.1), another natural question would be the validity of this result when
one correspondingly restricts the number of clocks and bounded cost variables. An-
other interesting research direction would be to investigate a possible extension of
the language theoretic results of [Qua10] to the setting of MPTA.

The cost-charging (quasi-)cycle assumption used to validate the BMC procedure
of Section 3.4 is related to the divergence assumptions made in [LR08, BMR08].

The presently proposed procedure of iteratively increasing the depth (for which
BMC is performed) is not efficient, particularly for a small bound ε on the minimum
cost incurred along quasi-cyclic viable paths. The question of whether other realistic
path conditions might admit efficient (symbolic) algorithms, and with applications
to decision problems for the Duration Calculus (DC) [CHR91] remains open. The
work in [FH07] implements a decision procedure for a rich fragment of DC, allowing
for positive linear combinations of accumulated durations with only upper bound
duration constraints. As negatively weighted durations map to negative cost rates
when extending the construction of [FH07], efficient symbolic algorithms for MPTA
with both positive and negative costs would enable reasoning about richer DC-
fragments involving both positive and negative linear combinations of accumulated
durations, with both upper- and lower-bound duration constraints.

4

Structural Transformations for

Extended Timed Automata

4.1 Introduction

Reasoning about networks of (real-time) systems is much easier when the execution
of the system components is viewed sequentially, as opposed to corresponding dis-
tributed or concurrent representations. Transformations of distributed system repre-
sentations to equivalent layered (i.e., sequential) representations were first explored
in [EF82] through a notion of communication closedness between system compo-
nents. Such a layered transformation was subsequently investigated in [Jan94] for a
process algebra based on hierarchical graphs, with an operator for layered compo-
sition (intermediate between sequential and parallel composition) that formalized
equivalences between the distributed and layered system representations through
the Communication Closed Layer (CCL) laws, by exploiting independence between
system components. Real-time extensions to this process algebra were presented in
[JPXZ94], where CCL laws were shown to hold under certain timing conditions,
even in the absence of cross-component independence.

We present in this chapter an enhancement of the layered transformation used
in the assertion-based reasoning techniques of the above works for simplifying the
automatic verification of (networks of) real-time systems. Our layered transforma-
tion is complemented by the transformation techniques of separation and flattening.
This chapter is a revised version of [7] with the following structure:

Many works on partial order reduction for (networks of) timed automata (TA)
(cf. [BJLY98, Min99, LNZ05, HP07]) assume local time semantics, where the clocks
of each constituent TA evolve independently so as to reduce timing-based dependen-
cies, but at the expense of extra reference clocks for resynchronization (cf. [BJLY98]).
In this chapter, we instead work with networks of TA extended with shared data vari-
ables (termed extended timed automata (ETA)), having synchronous clocks across
the constituent ETA, as supported by the well-established ETA model-checker UP-
PAAL [BDL04]. Dependencies in such ETA networks arise due to: (a) the read-write
interference of the variables shared across the ETA, and (b) the global timing con-
straints induced by synchronous clocks.

Section 4.2 of this chapter reviews ETA and their compositional constructs, while
Section 4.3 establishes communication closed equivalences that exploit the absence
of dependencies due to (a) and (b) above. Notions of non-interference are introduced

40 4 Structural Transformations for Extended Timed Automata

for dealing with (a), while (b) is handled by wrapped ETA that mimic local time
semantics in a network, even in the presence of globally synchronous clocks.

Section 4.4 of this chapter establishes communication closed equivalences for
ETA with synchronous clocks that exploit precedence relations, in the presence of
shared variable and clock dependencies between ETA.

The explicit passage of control (from one sequential phase of the system to the
next) necessary for applying (non-interference- or precedence-based) layered trans-
formations may however not be directly apparent from the system’s structure, ow-
ing to multiple nested cycles that often arise while modelling reactive distributed
real-time systems as ETA networks. We therefore introduce in Section 4.5 the trans-
formations of separation and flattening as (reachability preserving) pre-processing
steps that (under certain cycle conditions on the ETA) reduce the nesting depth
and the number of cycles in ETA networks. Communication closedness (via appro-
priate non-interference and/or precedence conditions) may be easily investigated on
such separated and flattened ETA, so that the verification of layered reachability
properties may be rendered almost trivial.

The interplay of the three structural transformations (separation, flattening, and
layering) is illustrated in Section 4.6 on an enhanced version of Fischer’s real-time
mutual exclusion protocol for two critical sections. Section 4.7 concludes the chapter.

4.2 ETA and Composition Operators

We now briefly review the extended timed automata (ETA) model for (networks of)
real-time systems enriched with shared data variables. Semantics of ETA are given in
terms of the underlying timed transition system and the associated regions. Various
compositional operators for ETA are also introduced – namely those for sequential,
step, parallel, and layered composition, along with the notions of non-interference
(for dealing with shared variables) and wrapping (for dealing with globally syn-
chronous clocks).

Extended timed automata.

We first introduce some notions that constitute the syntax of ETA, where the no-
tation (x, y, · · · ∈) X indicates that we denote by x, y · · · the typical elements of
the set X. Let (α, β, · · · ∈) Σ be a finite alphabet of channels. For each channel
α ∈ Σ there are two actions: α? denotes input on α and α! output on α, where
α?, α! /∈ Σ. We consider two different internal actions τ, ε 6∈ Σ, where τ results
only from synchronization. The set of all actions over Σ is denoted by (a, b, · · · ∈)
Σ?! = {α? | α ∈ Σ}∪ {α! | α ∈ Σ}∪ {τ, ε}. In the context of parallel composition,
input and output are complementary actions that can synchronize yielding τ . For
an action a ∈ Σ?! \ {τ, ε}, its complementary action is denoted by a, i.e., α? = α!,
and vice-versa.

Let (u, v, · · · ∈) V be a finite set of data variables ranging over a finite set D.
The set (ψD ∈) Ψ(V) of data expressions over V is the set of expressions involving
variables of V and the arithmetic operators +,−, · · · , interpreted in the usual way
for integer-valued data variables. The set (φD ∈) Φ(V) of data constraints over V is
the set of Boolean constraints over variables in V involving the arithmetic (+,−, · · ·)

4.2 ETA and Composition Operators 41

and relational (<,≤, >,≥) operators, interpreted in the usual way for integer-valued
data variables.A data valuation assigns to each data variable in V a value in D. If
|V | = m, we denote by (u,v, · · · ∈) Dm the set of data valuations.

Let (x, y, · · · ∈) C be a finite set of clocks. The set (φ ∈) Φ(C) of clock constraints
over C has the following syntax: φ ::= x ⊲⊳ k | φ1 ∧ φ2, where x ∈ C, k ∈ N, and
⊲⊳ ∈ {<,≤,≥, >}. The subset of clock constraints involving only upper bounds <,≤
on clocks is denoted by ΦU (C) The set (g ∈) G(C, V) of guards has the syntax:
g ::= φ | φD | g1 ∧ g2, where φ ∈ Φ(C) and φD ∈ Φ(V).

A clock valuation assigns a non-negative real value to each clock in C. If |C| = n,
we identify the set of clock valuations with (x,y ∈) R

n
≥0. For a clock valuation x

and a positive real number d, we write x+ d to denote the addition of d uniformly
to each component of x. By 0 we denote the clock valuation where all clocks are set
to 0, while v0 ∈ Dm denotes a designated initial data valuation. A reset operation
is an assignment x := 0 to a clock x ∈ C, or an assignment v := ψD to a data-
variable v ∈ V , where ψD ∈ Ψ(V). By (r ∈) R(C, V) we denote the set of lists
of reset operations. In the sequel, we shall identify constraints with the respective
sets of clock and data valuations satisfying them, so as to enable the application of
set-theoretic operations.

We then define an extended timed automaton (ETA) A as follows:

Definition 4.1 (Extended timed automaton). An extended timed automaton
(ETA) is a tuple
A = (L,Σ,C, V, l0, lF , Inv,E), where

• L is a finite set of locations,
• Σ is a finite alphabet of channels,
• C is a finite set of clocks with |C| = n,
• V is a finite set of data variables with |V | = m,
• l0 ∈ L is the initial location,
• lF ∈ L is the final location,
• Inv : L → ΦU (C) assigns a clock invariant to each location, where we assume

that Inv(lF) = true,
• E ⊆ L × Σ?! × G(C, V) × R(C, V) × L is a finite set of directed edges between

locations, where an edge e = (l, a, g, r, l′) from l to l′ involves an action a ∈ Σ?!

over the alphabet Σ, a guard g ∈ G(C, V), and a list r of reset operations
involving clocks in C and data variables in V .

Note that clock invariants, by definition, admit only upper bounds on the clock
values. An edge e ∈ E is of the form e = (l, a, g, r, l′) with l, l′ ∈ L, a ∈ Σ?!, g ∈
G(C, V), and r a list of reset operations. Define target(e) = l′ as the target location
of the edge e, act(e) = a as the action of e and edgesA(a) = {e ∈ E | act(e) = a}
as the set of edges in A with action a. For a pair of clock valuations x and y and
a constant k ∈ N, we denote by x ≈k y the k-region-equivalence between x and y,
defined as follows:

Definition 4.2 (k-region-equivalence). The k-region-equivalence relation ≈k on
two n-dimensional clock valuations x and y is defined by

x ≈k y iff ∀i ≤ n :

(xi > k) ∧ (yi > k)
∨ (int(xi) = int(yi) ∧ (fr(xi) = 0⇔ fr(yi) = 0)∧
∀j ≤ n : (fr(xi) ≤ fr(xj)⇔ fr(yi) ≤ fr(yj)))

 ,

42 4 Structural Transformations for Extended Timed Automata

Here, for a clock valuation x ∈ R
n
≥0, xi denotes its i-th component, i.e., the value of

the i-th clock, and int(xi) and fr(xi) denote the integer and fractional parts of xi,
respectively. By [x]k we denote the k-region containing x, which is the equivalence
class induced by ≈k.

The semantics of an ETA is given in terms of its timed transition system, which
consists of a (potentially infinite) set of states of the form (l,x,v), where l ∈ L,
x ∈ R

n
≥0, and v ∈ Dm. The transitions between such states result in the formation

of paths through the timed transition system, defined as follows:

Definition 4.3 (Path). A path π through a timed transition system is a (possibly

infinite) sequence π = 〈(l0,0,v0)
d0→ (l1,x1,v1)

e1→ (l2,x2,v2)
d2→ (l3,x3,v3)

e3→ . . .〉
of states with delays di ∈ R≥0 and edges ei ∈ E, subject to the following initiation
and consecution conditions:

1. Initiation: l0 is the initial location, and 0 and v0 are the initial clock and data
valuations, respectively:

2. Consecution (time-passage): for even i with (li,xi,vi)
di→ (li+1,xi+1,vi+1) we

require li+1 = li, xi+1 = xi + di with xi+1 ∈ Inv(li), and vi+1 = vi, where
we write xi+di to denote the addition of di uniformly to each component of xi.

3. Consecution (edges): for odd i with (li,xi,vi)
ei→ (li+1,xi+1,vi+1) we require

that ei is of the form ei = (li, ai, gi, ri, li+1), where (xi,vi) ∈ Inv(li)∩g, xi+1 =
r(xi) with xi+1 ∈ Inv(li+1), and vi+1 = r(vi), where r(x) denotes the clock
valuation obtained from x after resetting all the clocks in r, while r(v) denotes
the data valuation obtained from v by suitably updating all the data variables in
r.

The reachable state space of the ETA A, denoted Reach(A), is then given by the
set of states reachable from the initial state through transitions of all paths, with
Reachi(A) denoting the set of reachable states of A after i iterations of its transition
relation, defined as follows:

Definition 4.4 (Reachable state space of ETA). Reach(A) ⊆ L × R
n
≥0 ×Dm

is the reachable state space of an ETA A, consisting of a (potentially infinite) set
of states of the form (l,x,v), where l ∈ L, x ∈ R

n
≥0, and v ∈ Dm. It is defined

inductively as follows, with Reachi(A) denoting the reach-set under i ∈ N steps,
starting from the initial state (l0,0,v0) and alternating between time-passage and
discrete transitions:

• Reach0(A) = {(l0,0,v0)},
• Reachi+1(A) = Reachi(A) ∪ Succ(Reachi(A)),

where if i ≥ 0 is even,

Succ(Reachi(A)) =

{
(l,x,v)

∣∣∣∣
∃x′ ∈ Inv(l) ∃ d ∈ R

n
≥0 : (l,x′,v) ∈ Reachi(A)

∧ x = x′ + d ∧ x ∈ Inv(l)

}

and if i ≥ 0 is odd, Succ(Reachi(A)) =

(l,x,v)

∣∣∣∣∣∣∣∣∣∣

∃ e = (l′, a, g, r, l) ∈ E
∃ (x′,v′) ∈ Inv(l′) ∩ g :
(l′,x′,v′) ∈ Reachi(A)
∧ x = r(x′)
∧ v = r(v′)

4.2 ETA and Composition Operators 43

• Reach(A) =
⋃

i∈N
Reachi(A).

This leads to the notion of reachability equivalence denoted by ≡. Given two ETA
A1 and A2, we define A1 ≡ A2 iff ∀i ∈ N : Reachi(A1) = Reachi(A2). Thus ≡
requires equal sets of reachable states after every iteration of the transition relation.

ETA compositions.

So far we considered ETA operating in isolation. In practice, real-time systems com-
municate with each other and their environment. This results in composite systems
with communicating components. The communication is via synchronizing actions
drawn from a shared alphabet and via shared data variables. We now consider four
operators for constructing composite systems: sequential, step, parallel, and layered
composition defined for ETA Ai = (Li, Σi, Ci, Vi, l0i, lF i, Invi, Ei), i = 1, 2, with
disjoint locations: L1 ∩ L2 = ∅.

For modeling that the execution of A1 is followed by that of A2, it is convenient
to have two composition operators at hand. The sequential composition A1;A2 amal-
gamates the final location lF 1 of A1 with the initial location l02 of A2, while the
step composition A1✄A2 links lF 1 and l02 by an explicit step transition t. Formally,
A1;A2 has the location set L1 ∪L2 ∪ {l̃F 1} \ {lF 1, l02}, where l̃F 1 is a new location
obtained by amalgamating lF 1 with l02, as given below:

Definition 4.5 (Sequential ;-composition). Let l01 6= lF 1 and l02 6= lF 2, with
lF 1 having no outgoing edges. Then the sequential composition of A1 and A2 is
defined as the ETA

A1;A2 = (L1 ∪ L2 ∪ {l̃F 1} \ {lF 1, l02}, Σ1 ∪Σ2, C1 ∪ C2, V1 ∪ V2, l01, lF 2, Inv,E),

where l̃F 1 is disjoint from L1 ∪ L2, Inv(li) = Invi(li) for li ∈ Li and i = 1, 2,

Inv(l̃F 1) = Inv1(lF 1) ∧ Inv2(l02), and E is given by:

E =(E1 \ {(l1, a1, g1, r1, lF 1) | (l1, a1, g1, r1, lF 1) ∈ E1})
∪ {(l1, a1, g1, r1, l̃F 1) | (l1, a1, g1, r1, lF 1) ∈ E1}
∪ (E2 \ {{(l02, a2, g2, r2, l2) | (l02, a2, g2, r2, l2) ∈ E2}∪

{(l2, a2, g2, r2, l02) | (l2, a2, g2, r2, l02) ∈ E2}})
∪ {(l̃F 1, a2, g2, r2, l2) | (l02, a2, g2, r2, l2) ∈ E2 ∧ l2 6= l02}
∪ {(l2, a2, g2, r2, l̃F 1) | (l2, a2, g2, r2, l02) ∈ E2 ∧ l2 6= l02}
∪ {(l̃F 1, a2, g2, r2, l̃F 1) | (l02, a2, g2, r2, l02) ∈ E2}.

The first two lines in the construction of E in A1;A2 deal with edges of A1

leading to lF 1, while the last five lines deal with edges of A2 that either leave or
enter l02. Note that we assume Inv(lF 1) = true by Definition 4.1. We require that
there is no outgoing edge from lF 1, as it would otherwise be possible to reenter A1

from A2 via incoming edges to l02 and outgoing edges from lF 1. The set of edges E is
obtained by appropriately assigning l̃F 1 as the target or source location for edges in
E1 entering lF 1 and for edges in E2 entering or leaving l02. In the step composition
A1 ✄ A2 defined below, the stepping transition t allows for lF 1 to have outgoing
transitions, as no location of A1 will be re-entered once t has been executed.

44 4 Structural Transformations for Extended Timed Automata

Definition 4.6 (Step ✄-composition). The step composition of A1 and A2,
denoted A1 ✄ A2, is the ETA A1 ✄ A2 = (L1 ∪ L2, Σ1 ∪ Σ2, C1 ∪ C2, V1 ∪
V2, l01, lF 2, Inv,E), with Inv(li) = Invi(li) for li ∈ Li and i = 1, 2, and E =
E1 ∪ E2 ∪ {t}, where t = (lF 1, ε, true, ∅, l02) steps from lF 1 to l02.

Alternative definitions of sequential and step compositions for timed automata may
be found in [BP99, DHQ+08]. Parallel composition ‖ of ETA is in the CCS-style
[Mil89], i.e., parallel ETA synchronize on common actions but also act autonomously
on all actions – the latter is modelled by interleaving. In order to avoid any read-
write and write-write conflicts w.r.t the shared variables in the parallel ETA, we
require that edges with synchronizing actions are non-interfering, as defined below.
For an edge e = (l, a, g, r, l′) of an ETA A its write-set wr(e) is the set of all clocks
and data variables appearing on the left-hand side of one of the reset operations in
r, while its read-set rd(e) is the set of all clocks and data variables appearing in the
guard g or on the right-hand side of a reset operation in r.

Definition 4.7 (Non-interfering edges 6⌢). Let E1 and E2 be sets of edges. The
non-interference relation 6⌢ ⊆ E1 × E2 is defined for e1 ∈ E1 and e2 ∈ E2 by:
e1 6⌢ e2 if rd(e1) ∩ wr(e2) = wr(e1) ∩ rd(e2) = wr(e1) ∩ wr(e2) = ∅. If the latter
condition does not hold, e1 and e2 interfere and we write e1 ⌢ e2.

The relation 6⌢ is canonically lifted to sets of edges (and consequently to ETA):
E1 6⌢ E2 iff for all e1 ∈ E1 and e2 ∈ E2 we have e1 6⌢ e2. For two ETA A1 and
A2 with respective edge-sets E1 and E2, we have that A1 6⌢ A2 when (1) E1 6⌢ E2,
i.e., their edge-sets are non-interfering, and (2) C1 ∩C2 = ∅, i.e., their clock-sets are
disjoint so as to eliminate timing-induced dependencies between A1 and A2 by the
wrapping construction (cf. Definition 4.10). In the context of parallel composition ‖,
we require a more relaxed notion of synchronized non-interference on the constituent
ETA A1 and A2 in order for A1‖A2 to be well-formed.

Definition 4.8 (Synchronized non-interfering ETA 6⌢sync). ETA A1 and A2

over alphabets Σ1 and Σ2, respectively, are synchronized non-interfering, denoted
A1 6⌢sync A2, if ∀a ∈ Σ1?! \ {τ, ε} : a ∈ Σ2?! =⇒ edgesA1(a) 6⌢ edgesA2(a).

The relation 6⌢sync on ETA is only w.r.t synchronizing actions on common channels,
and thus (unlike the more restrictive 6⌢ relation on ETA) does not preclude shared-
variable and clock dependencies between actions on disjoint channels.

The parallel composition of two A1 and A2, with A1 6⌢sync A2, is then con-
structed according to a CCS-style synchronization and interleaving, as follows:

Definition 4.9 (Parallel ‖-composition). When A1 6⌢sync A2, their parallel
composition is defined by A1‖A2 = (L1×L2, Σ1∪Σ2, C1∪C2, V1∪V2, (l01, l02), (lF 1, lF 2), Inv,E),
where ∀ (l1, l2) ∈ L1 × L2 : Inv(l1, l2) = Inv1(l1) ∧ Inv2(l2) and E given by:

• Synchronization: If e1 = (l1, a1, g1, r1, l
′
1) ∈ E1 and e2 = (l2, a2, g2, r2, l

′
2) ∈ E2

with a2 = a1 then ((l1, l2), τ, g1 ∧ g2, r1r2, (l′1, l′2)) ∈ E.

• Interleaving: If e1 = (l1, a1, g1, r1, l
′
1) ∈ E1 then ∀ l2 ∈ L2 : ((l1, l2), a1, g1, r1, (l

′
1, l2)) ∈ E.

Conversely, if e2 = (l2, a2, g2, r2, l
′
2) ∈ E2 then ∀l1 ∈ L1 : ((l1, l2), a2, g2, r2, (l1, l

′
2)) ∈ E.

4.2 ETA and Composition Operators 45

Note that in the synchronization case it is not relevant whether we take r1r2 (first
the list r1 of reset operations and then r2) as above or the reverse order r2r1 because
we assume the synchronized non-interference e1 6⌢ e2.

Our CCS-style interleaving allows A1 and A2 to act autonomously on all ac-
tions, thus leaving A1‖A2 open to further (parallel) composition with an ETA A3,
with which the interleaving edges of A1‖A2 may synchronize. This contrasts with
the semantics of UPPAAL for ETA networks, where every discrete transition is
represented as having a τ -labelled internal action (obtained by synchronization of
complementary ! and ? actions) for the symbolic computation of the state-space of a
parallel composition. Thus UPPAAL views A1‖A2 as a closed network having only
τ -labelled edges. Such a closed network semantics may be obtained for our parallel
composition by means of channel restriction (cf. Definition 4.13 on p. 146 of [OD08])
for eliminating interleaving edges in A1‖A2.

A real-time distributed system often consists of (sequential) phases that execute
in parallel on multiple platforms, wherein a transition (edge) within a given phase
can execute only after all dependent transitions (edges) in each preceding phase
have been executed. It is clear that the non-interference relation of Definition 4.7
sufficiently captures (in-)dependence in the untimed setting, where dependencies are
induced only by shared variables. In the timed setting of ETA, however, the clocks
of the various system components evolve synchronously, resulting in timing-induced
dependencies even in the presence of disjoint sets of clocks. In contrast to several
works on the partial order reduction of TA (e.g., [BJLY98, Min99, LNZ05]) that
deal with such timing-induced dependencies by imposing the semantic condition of
local time (where, in addition to mutual disjointness, the clocks of the constituent
components run entirely independent of each other), we retain here the synchrony
between the clocks of the various components as in the UPPAAL model-checker, but
decouple the timing influences between the components by wrapping an ETA with
an initial location that admits idling for arbitrarily long periods before proceeding
to its actual execution, as given below:

Definition 4.10 (Wrapped ETA). An ETA A = (L,Σ,C, V, l0, lF , Inv,E) is
wrapped if Inv(l0) = true and every edge e ∈ E leaving l0 is of the form
e = (l0, ε, true, r, l), where r resets all clocks in C to 0. If A is wrapped, we de-
note this by writing [A].

Remark 4.1. The arbitrary idling permitted in l0 in Definition 4.10 mimics local
time semantics when [A] is considered in the context of a (parallel) composition.
Intuitively, [A] is protected against time influences from components working in
parallel, as long as it stays in its initial location. We illustrate this by comparing the
parallel composition of two ETA with that of their wrapped versions in Figure 4.1.
Note that the ETA A and B therein do not share any variable, and have disjoint
(but synchronous) clocks x and y. Thus A 6⌢ B. The synchronous evolution of x
and y however results in a timing induced dependency between the edges a and b,
with a never occurring after b owing to the corresponding guards. Wrapping A and
B decouples this timing induced dependency within a parallel composition (owing
to the preceding clock resets).

We now introduce an asymmetric layered composition operator • (intermediate
between parallel and sequential composition) that involves the non-interference re-
lation on edges of ETA. The layered composition of A1 and A2 is given by A1 • A2

46 4 Structural Transformations for Extended Timed Automata

P :

A:

lFA

a x < 5

B:

lFB

b y > 5

[P]:

[A]:

lFA

x := 0

a x < 5

[B]:

lFB

y := 0

b y > 5

Fig. 4.1. Here, in P = A‖B to the left, A and B are not wrapped. Thus, although
A 6⌢ B, the edge a can never occur after the edge b in P , as the clocks x and
y are synchronous. In the wrapped version to the right, where [P] = [A]‖[B], the
preceding resets allow the edges a and b to occur in either order in [P].

where A1 6⌢sync A2, and Inv is as in the parallel composition A1‖A2, while E is a
subset of the set of edges of A1‖A2, as an edge of A2 is allowed to execute in A1 •A2

only after all dependent edges of A1 have been executed. This layered composition
is defined formally below:

Definition 4.11 (Layered •-composition). When A1 6⌢sync A2, their layered
composition is defined by

A1 •A2 = (L1 × L2, Σ1 ∪Σ2, C1 ∪ C2, V1 ∪ V2, (l01, l02), (lF 1, lF 2), Inv,E),

where Inv is as in the parallel composition A1‖A2, while E now differs in the second
part of the interleaving case:

• Synchronization: If e1 = (l1, a1, g1, r1, l
′
1) ∈ E1 and e2 = (l2, a2, g2, r2, l

′
2) ∈ E2

with a2 = a1 then ((l1, l2), τ, g1 ∧ g2, r1r2, (l′1, l′2)) ∈ E.
• Interleaving: If e1 = (l1, a1, g1, r1, l

′
1) ∈ E1 then ∀ l2 ∈ L2 : ((l1, l2), a1, g1, r1, (l

′
1, l2)) ∈ E.

If e2 = (l2, a2, g2, r2, l
′
2) ∈ E2 and ∀ l1, l∗1 ∈ L1 : l1

∗−→ l∗1 ∀ e1 = (l1
∗, a1, g1, r1, l

′
1) ∈

E1 : e1 6⌢ e2 then ((l1, l2), a2, g2, r2, (l1, l
′
2)) ∈ E

where l1
∗−→ l∗1 expresses that l∗1 is reachable from l1 in the syntactic structure of A1

through an arbitrary sequence of edges.

Thus only the second part of the interleaving case differs from parallel composi-
tion: an interleaving edge of A2 is allowed to execute only after all dependent edges
of A1 (in the sense of the⌢-relation) have been executed. A natural setting for such
asymmetric interleaving arises when A1 edges write to variables that are then read
by (dependent) A2 edges.

The four operators for ETA compositions, namely those for sequential (;), step
(✄), parallel (‖), and layered (•) compositions, are illustrated in Figure 4.2.

4.2 ETA and Composition Operators 47

A1:

l01 l1 lF 1

A2:

l02 lF 2

a
x ≥ 1
v := 1

b
x := 0

d
y ≥ 1
v ≤ 2

A1;A2:

l01

l1

l̃F 1 lF 2

a
x ≥ 1
v := 1

b
x := 0 d

y ≥ 1
v ≤ 2

A1 ✄A2: l01

l1

lF 1 l02 lF 2

a
x ≥ 1
v := 1

b
x := 0 d

y ≥ 1
v ≤ 2

A1‖A2:

(l01, l02)

(l1, l02)

(lF 1, l02)

(l01, lF 2)

(l1, lF 2)

(lF 1, lF 2)

a
x ≥ 1
v := 1

a
x ≥ 1
v := 1

b
x := 0

b
x := 0

d
y ≥ 1
v ≤ 2

d
y ≥ 1
v ≤ 2

d
y ≥ 1
v ≤ 2

A1 •A2:

(l01, l02)

(l1, l02)

(lF 1, l02)

(l1, lF 2)

(lF 1, lF 2)

a
x ≥ 1
v := 1

b
x := 0

b
x := 0

d
y ≥ 1
v ≤ 2

d
y ≥ 1
v ≤ 2

Fig. 4.2. Composition operators for two ETA A1 and A2 with clocks x, y, a shared
data variable v, actions a, b, d, assumed to be non-complementary, and an interfer-
ence ea ⌢ ed of the edge labeled by a and the edge labeled by d induced by the
variable v. In the step composition A1 ✄ A2, the ε-label on the stepping transition
has been omitted. Initial locations are marked with an additionally inscribed circle.

48 4 Structural Transformations for Extended Timed Automata

4.3 CCL Laws and Equivalences

This section formalizes communication closed layer equivalences for ETA networks
under suitable non-interference conditions. We begin with an adaptation of the CCL
law of [Jan94] to the setting of ETA.

Theorem 4.1 (CCL with •-composition). For all ETA A1, A2 and B1, B2 with
A1 6⌢ B2 and B1 6⌢ A2 the following communication closed layer law holds:

(A1 •A2) ‖ (B1 •B2) = (A1‖B1) • (A2‖B2).(CCL)

Proof. We show the CCL equality, where we identify location tuples (lA1 , lA2 , lB1 , lB2)
of the ETA of the LHS with reordered location tuples (lA1 , lB1 , lA2 , lB2) of the ETA
of the RHS.

Consider a location l = (lA1 , lA2 , lB1 , lB2) of (A1 • A2)‖(B1 • B2) and an edge
e = (l, a, g, r, l′) starting at this location. By the definition of • and ‖, the edge
e could be due to either (a1) A1, (a2) B1, (a3) A2, (a4) B2 individually, or as a
synchronization involving (b1) A1 and A2, (b2) A1 and B1, (b3) A1 and B2, (b4)
A2 and B1, (b5) A2 and B2. We have to show that e also occurs at the location l of
(A1‖B1) • (A2‖B2).

The cases (a1) and (a2) are relatively straightforward, whereas the cases (a3)
and (a4) require more care. Of these we consider (a3) in detail. Here e is permitted
in the layered composition A1 • A2, i.e., from lA1 there is no location syntactically
reachable where an edge e1 starts that interfers with e. Then e can occur at l in
A2‖B2 by the interleaving case and in (A1‖B1) • (A2‖B2) as it is permitted by the
layered composition with A1‖B1. This holds because e is permitted by A1 and by
B1 due to the assumption B1 6⌢ A2. The case (a4) is symmetric.

Of the synchronization cases we consider (b5) in detail. It combines arguments
for the individual cases (a3) and (a4). There are edges with complementary actions
occurring in A2 and B2 individually that can synchronize to an edge labeled with τ
in the context of A2‖B2. The part of the τ -edge stemming from A2 was permitted
in A1 •A2, and the part of the τ -edge stemming from B2 was permitted in B1 •B2.
Furthermore, since A1 6⌢ B2 and B1 6⌢ A2, the part of the τ -edge stemming from
A2 is non-interfering with all edges in B1, and the part of the τ -edge stemming
from B2 is non-interfering with all edges in A1. Thus the τ -edge itself occurs in
(A1‖B1) • (A2‖B2).

So indeed e occurs also at the location l of (A1‖B1) • (A2‖B2).
Vice versa, consider a location l = (lA1 , lB1 , lA2 , lB2) and an edge e = (l, a, g, r, l′)

starting at this location in (A1‖B1) • (A2‖B2). The same cases (a1)–(a4) and (b1)–
(b5) need to be considered. ⊓⊔

Remark 4.2. 1. Since equality is a congruence w.r.t. parallel composition, the CCL
law holds also in the context of an arbitrary parallel ETA C. For example, we
have ((A1 • A2)‖(B1 • B2))‖C = ((A1‖B1) • (A2‖B2))‖C. Clearly, equality of
ETA implies reachability equivalence. So the CCL law remains valid when we
replace = by ≡. Note that reachability equivalence itself is not a congruence

4.3 CCL Laws and Equivalences 49

w.r.t. parallel composition because it ignores the action labels of the edges,
which are decisive for synchronization with a parallel ETA.

2. Theorem 4.1 holds also when the ETA appearing to the right of the •-operator
are specialized to wrapped ones, i.e., provided A1 6⌢ B2 and B1 6⌢ A2, we have
(A1 • [A2])‖(B1 • [B2]) = (A1‖B1) • ([A2]‖[B2]).

3. Theorem 4.1 may be generalized to multiple parallel and layered instances of
ETA as follows: If there are no cross-interferences, i.e., Ai,j 6⌢ Ak,l for i 6= k
and j 6= l, then

A1,1

•
· · ·
•

An,1

∥∥∥∥∥∥∥∥∥∥

· · ·
· · ·
· · ·
· · ·
· · ·

∥∥∥∥∥∥∥∥∥∥

A1,m (A1,1 ‖ · · · ‖ A1,m)
• •
· · · = · · · · · · · · ·
• •

An,m (An,1 ‖ · · · ‖ An,m)

The above equality between the parallel and layered versions is again upto a
reordering of location tuples.

PO-equivalence.

We now formalize partial order (po-) equivalence as a means of relating step and
layered compositions. For this relationship, we have to address the fact that in a
layered composition A1 • A2 there may be τ -edges arising from synchronization of
complementary actions, whereas such τ -edges do not arise in the step composition
A1 ✄ A2. For this purpose, we introduce for a path π of A1 • A2 (or of A1‖A2) the
operation split(π) that splits every synchronization edge of π (labelled with τ) into
a sequence of its constituent input and output edges, which is possible owing to
the synchronized non-interference assumed for edges labelled with complementary
actions (see Definition 4.8). Note that this non-interference implies that the order
in which synchronization edges are split into constituent input and output edges is
irrelevant, such that we may always choose the (unique) representative path in which
the output action always precedes the complementary input action with zero-delay
in between. Consider a finite path π of A1 •A2 or of A1‖A2 with fragments π′ and
π′′ of the form

π = π′ d−→ ((lA1 , lA2),x,u)
τ−−→ ((l′A1

, l′A2
),x ′′,u ′′) d′′−−→π′′,

where the τ -action has resulted from synchronizing an action a = α! ∈ Σ1?! with
a = α? ∈ Σ2?! . Then

split(π) = π′ d−→ ((lA1 , lA2),x,u)
α!−−→ ((l′A1

, lA2),x
′,u ′) 0−→

((l′A1
, lA2),x

′,u ′) α?−−→ ((l′A1
, l′A2

)x ′′,u ′′) d′′−−→π′′, where the intermediate valuations
x ′ and u ′ are uniquely determined by the resets of the α!-labelled edge of A1 on x
and u. Following such a splitting of τ -edges, we may now define po-equivalence on
paths of ETA.

Definition 4.12 (po-equivalence ≡po of paths). Let A1 and A2 be ETA sharing
an alphabet Σ, with Π1 and Π2 denoting the corresponding sets of finite paths termi-
nating in their final locations lF1 resp. lF2 . Let ≈ be a relation between the locations
of A1 and A2. Then π1 ∈ Π1 is po-equivalent to π2 ∈ Π2, denoted π1 ≡po π2, relative

50 4 Structural Transformations for Extended Timed Automata

to ≈ on the corresponding locations, ≈k on the corresponding clock-valuations (where
k is the maximum constant of A1 and A2), and the identity on the corresponding
data valuations, if split(π2) can be obtained from split(π1), time-abstractedly and by
ignoring stuttering ε-labelled edges (of the form (l, ε, true, ∅, l′), by repeated permu-
tation of adjacent independent edges separated by only one time-passage.

For illustration, consider two (split and ε-free) path fragments

π1 = 〈(l01,0,v0)
d0→ (l1,x1,u1)

e→ (l2,x2,u2)
d2→ (l3,x3,u3)

f→ (l4,x4,u4)〉

and

π2 = 〈(l02,0,v0)
d′0→ (l′1,y1,v1)

f→ (l′2,y2,v2)
d′2→ (l′3,y3,v3)

e→ (l′4,y4,v4)〉,

where d0, d2, d
′
0, d

′
2 ∈ R≥0. Then π1 ≡po π2 relative to ≈ with l01 ≈ l02, ∀1 ≤

i ≤ 4 : li ≈ l′i, x4 ≈k y4,u4 = v4, and e 6⌢ f . Thus, π1 and π2 (relative to
≈ on their locations, region-equivalence on their clock valuations, and the identity
on their data valuations) differ only in the (permutative) ordering of independent
transitions. Note that we need the k-region-equivalence ≈k to relate the (final) clock
valuations x4 and y4 of owing to the intermediate delays in one path being time
abstractedly (and not exactly) matched in the other path. Note also that we ignore
ε-labelled stutter edges for ≡po as such edges are only of the form (l, ε, true, ∅, l′)
(e.g., as encountered while stepping from A1 to A2, cf. Definition 4.6). As we ignore
ε-transitions for ≡po, two po-equivalent paths may not necessarily have the same
length. This definition of ≡po is now lifted to ETA as follows:

Definition 4.13 (po-equivalence ≡po of ETA). For ETA A1 and A2 sharing
a common alphabet Σ, with Π1 and Π2 denoting the corresponding sets of finite
paths terminating in their respective final locations lF 1 and lF 2 respectively, we write
A1 ≡po A2 iff ∀πi ∈ Πi ∃π3−i ∈ Π3−i : πi ≡po π3−i, where i ∈ {1, 2}.

The following notion of layered normal form is then used for permuting paths of
layered compositions.

Definition 4.14 (Layered normal form). A (finite, terminating) path π of
A1 • A2 is in layered normal form (LNF) if it consists of consecutive edges from E1

passing through lF 1, followed by consecutive edges from E2 ending in lF 2.

In a path π of A1 •A2 in LNF, the A2-transitions are delayed until all A1-transitions
have occurred. This may be too late because the clock constraints of the A2-
transitions may not be satisfied any more. To avoid this issue, we wrap A2 so that
starting [A2] resets all clocks of A2. We thus mimic local time semantics for A2.
Now Proposition 4.1 states that every path of A1 • [A2] can be rewritten into a po-
equivalent path in LNF, which leads to Proposition 4.2 establishing po-equivalence
between layered and step compositions of ETA.

Proposition 4.1 (≡po and LNF). Consider an ETA A1 with the final location lF 1

and a wrapped ETA [A2] with the final location lF 2. Let Π denote the set of all finite
paths of A1 • [A2] terminating in (lF 1, lF 2), and ΠL ⊆ Π the subset of the paths in
LNF. Then we have that ∀π ∈ Π ∃π′ ∈ ΠL : π ≡po π

′.

4.3 CCL Laws and Equivalences 51

Proof. Take a path π ∈ Π of A1 • [A2]. Since there may be synchronization edges
(labelled with τ) in π, we need to demonstrate that split(π) may be suitably per-
muted into a path of A1 • [A2] in LNF. By construction, split(π) has passed through
the final location lF1 of A1, and contains only interleavings of edges from A1 and A2.
If edges of A2, say in the order e1, . . . , en, occur in split(π) before A1 has reached
its final location lF 1, we permute these edges “to the right” so that they occur after
lF 1 has been reached, thereby generating a path π′ ∈ ΠL with π ≡po π

′.
Such permutations are possible, as by Definition 4.11 of •, the edges e1, . . . , en

satisfy e 6⌢ ei for all edges e of A1 that need to be permuted “to the left”, before
the occurrence of lF1 in split(π). Note that regarding the global time, the edges
e1, . . . , en (that now have been permuted “to the right” of lF1) are delayed, but this
delay does not prevent e1 (and subsequently e2, . . . , en) from occurring, because A2

is wrapped. Moreover, as Inv(lF 1) = true by Definition 4.1, it is possible for A1 to
spend any amount of time in lF 1, irrespective of whether lF 1 is reached along π or
π′. Hence the intitial edge e1 can start after any delay, thereby resetting the clocks
of A2 (cf. Definition 4.10), thus enabling e2, . . . , en to proceed according to their
local time in A2, as would be the case for the path π′ ∈ ΠL. ⊓⊔

Proposition 4.2 (≡po between •- and ✄-compositions). For an ETA A1 and
a wrapped ETA [A2], we have that A1 • [A2] ≡po A1 ✄ [A2].

Proof. We provide a sketch of the proof here by first introducing a relation ≈ that
relates locations of A1•[A2] with those of A1✄[A2], defined by ∀l1 ∈ L1 : (l1, l02) ≈ l1
and ∀l2 ∈ L2 : (lF 1, l2) ≈ l2.

Let Π✄ (resp. Π•) be the set of all finite paths of A1 ✄ [A2] (resp. A1 • [A2])
terminating in lF 2 (resp. (lF 1, lF 2)). Then

• ∀π ∈ Π✄ ∃π′ ∈ Π• : π′ ≡po π, where π
′ is in LNF.

• ∀π′ ∈ Π• ∃π ∈ Π✄ : π ≡po π
′, where π′ is either in LNF, or is po-equivalent

to another path in Π• that is in LNF (cf. Proposition 4.1).

The po-equivalence between π and π′ above is relative to ≈ between their re-
spective locations (when π′ is in LNF), region equivalence (w.r.t the maximum of
all constants of A1 and A2) between the respective clock valuations, and identity
between the respective data valuations, modulo the ε-labelled stepping transition
in π. The po-equivalence between A1 ✄ [A2] and A1 • [A2] follows as an immediate
consequence. ⊓⊔

Replacing • by ✄ in the CCL-law of Theorem 4.1 yields po-equivalences for
wrapped ETA [A2] and [B2].

Theorem 4.2 (≡po-CCL with ✄-composition). For ETA A1, B1 and wrapped
ETA A2, B2 with A1 6⌢ B2 and B1 6⌢ A2 the CCL law

(A1 ✄ [A2]) ‖ (B1 ✄ [B2]) ≡po (A1‖B1)✄ ([A2] ‖ [B2])(CCL-step-po)

holds for po-equivalence.

Proof. Let A = A1 ✄ [A2], B = B1 ✄ [B2], S1 = A1‖B1, and S2 = [A2]‖[B2]. We
then write S = S1 ✄ S2 and P = A‖B, where it needs to be shown that P ≡po S.
Let ΠP resp. ΠS denote the set of finite paths of P resp. S terminating in their final

52 4 Structural Transformations for Extended Timed Automata

location (lFA2
, lFB2

), where lFA2
resp. lFB2

is the final location of A2 resp. B2. Then

clearly ΠS ⊆ ΠP . It then remains to show that ∀π ∈ ΠP ∃π′ ∈ ΠS : π ≡po π
′.

As π may contain synchronized τ -edges, we need to demonstrate that split(π) may
be suitably permuted into a (split) path of S. By construction, split(π) has passed
through the final location (lFA1

, lFB1
) of S1, and contains only interleavings of edges

from A1, B1, A2, and B2. If edges of A2, say in the order eA1 , . . . , eAn , and those
of B2, say in the order eB1 , . . . , eBm , occur in split(π) before (lFA1

, lFB1
) has been

reached, we permute such edges “to the right” so that they occur after (lFA1
, lFB1

),

thereby generating a path π′ ∈ ΠS with π ≡po π
′. Note that the po-equivalence in

this case involves the identity relation on locations of P and S.
Such permutations are possible, as by the side-condition B1 6⌢ A2, the edges

eA1 , . . . , eAn satisfy eB 6⌢ eAi for all edges eB from B1 that need to be permuted
“to the left”, before the occurrence of (lFA1

, lFB1
) in split(π). Likewise, by the

side-condition A1 6⌢ B2, the edges eB1 , . . . , eBm satisfy eA 6⌢ eBi for all edges
eA of A1 that again need to be permuted “to the left”, before the occurrence of
(lFA1

, lFB1
) in split(π). Note that regarding the global time, the edges eA1 , . . . , eAn

and eB1 , . . . , eBm (that now have been permuted “to the right” of (lFA1
, lFB1

)) are
delayed, but these delays do not prevent eA1 and eB1 (and subsequently eA2 , . . . , eAn

and eB2 , . . . , eBm) from occurring, because both A2 and B2 are wrapped. Hence
the intitial edges eA1 and eB1 can start after arbitrary delays, thereby resetting
the clocks of A2 resp. B2 (cf. Definition 4.10), thus enabling eA2 , . . . , eAn and
eB2 , . . . , eBm to proceed according to their local times in [A2]‖[B2], as would be
the case for the path π′ ∈ ΠS . ⊓⊔

Remark 4.3. 1. As stated earlier in Remark 4.2, the equality induced by the CCL
law of Theorem 4.1 is a congruence preserved in arbitrary parallel contexts, i.e,
if A1 6⌢ B2 and B1 6⌢ A2, then for any ETA C, we have ((A1 • [A2])‖(B1 •
[B2]))‖C = ((A1‖B1) • ([A2]‖[B2]))‖C. However, when we replace the • by ✄,
the resultant po-equivalences from Theorem 4.2 are in general not preserved in
arbitrary parallel contexts, i.e, even if A1 6⌢ B2 and B1 6⌢ A2 it generally does
not follow that ((A1 ✄ [A2])‖(B1 ✄ [B2]))‖C ≡po ((A1‖B1) ✄ ([A2]‖[B2]))‖C,
except when C is independent of all the other ETA. By contrast, the equalities
of Theorem 4.1 and ≡po of Theorem 4.2 are both preserved in arbitrary step
contexts, i.e, for any ETA C, when A1 6⌢ B2 and B1 6⌢ A2, we have ((A1 •
[A2])‖(B1 • [B2])) ✄ C = ((A1‖B1) • ([A2]‖[B2])) ✄ C, and ((A1 ✄ [A2])‖(B1 ✄

[B2]))✄ C ≡po ((A1‖B1)✄ ([A2]‖[B2]))✄ C.
2. Theorem 4.2 may also be generalized to multiple parallel and step instances of

ETA: If there are no cross-interferences, i.e., Ai,j 6⌢ Ak,l for i 6= k and j 6= l,
and if all Ai,j for 2 ≤ i ≤ n are wrapped, then

A1,1

✄

· · ·
✄

[An,1]

∥∥∥∥∥∥∥∥∥∥

· · ·
· · ·
· · ·
· · ·
· · ·

∥∥∥∥∥∥∥∥∥∥

A1,m (A1,1 ‖ · · · ‖ A1,m)
✄ ✄

· · · ≡po · · · · · · · · ·
✄ ✄

[An,m] ([An,1] ‖ · · · ‖ [An,m])

3. The ETA equivalences seen so far are related thus: = ⇒ ≡ ⇒ ≡po.

4.3 CCL Laws and Equivalences 53

Localized reachability in non-terminating ETA.

The po-equivalence ≡po that relates parallel and step-compositions of (wrapped)
ETA under suitable “cross-independence” conditions (cf. Theorem 4.2) is restrictive,
in the sense that ≡po examines only finite paths (terminating in the final locations)
for possible permutations. In practice it is often necessary to examine ETA with
non-terminating paths (typically arising in distributed reactive real-time systems
that (networks of) ETA seek to model). To this end, we introduce a location-based
equivalence ≡L that localizes reachability within a layer. As with ≡po, this layered
reachability equivalence ≡L arises by the replacement of • by ✄ within the CCL
law. However, unlike ≡po, the equivalence ≡L may also be applied to ETA with
possibly non-terminating paths, and suffices for the preservation of mutual exclusion
properties, as will be shown in Section 4.6.

Definition 4.15 (Layered reachability equivalence ≡L). Let Reachloc(A) de-
note the set of reachable locations of A. Consider ETA P and S, with both having
sub-ETA A1, A2, B1, B2 with disjoint sets of locations. We define layered reachabil-
ity equivalence P ≡L S as follows:

∀ i ∈ {1, 2} ∀ la ∈ LAi , lb ∈ LBi : (la, lb) ∈ Reachloc(P) iff (la, lb) ∈ Reachloc(S).

The relation ≡L is an equivalence relation on ETA with the structure as given
above, where the sub-ETA A1, A2, B1, and B2 are combined in P and S by means
of parallel and step compositions. In the following theorem, we consider an ETA P
with parallel composition as the top-most operator and an ETA S with the step
composition as the top-most operator. In both ETA, the sub-ETA A1, B1 constitute
one layer and the sub-ETA A2, B2 a second layer. Due to the localized property
of ≡L, wherein one considers only location reachability within a layer, the issue of
(non-)termination is implicitly handled: for the two ETA P and S, with P ≡L S
as in Definition 4.15, we consider only the cases that either both P and S are still
in their first layer (with control residing at a location pair drawn from locations in
A1 and B1), or that both P and S have terminated their first layer (after having
passed through its final location (lFA1

, lFB1
)) and are now in their second layer (with

control residing at a location pair drawn from locations in A2 and B2). Cross-layer
properties are not necessarily preserved between P and S. Indeed, for a location-pair
la ∈ LA2 , lb ∈ LB1 , we may have (la, lb) ∈ Reachloc(P) \ Reachloc(S), because B1

and hence the first layer (A1‖B1) in S may not terminate.
Theorem 4.3 below establishes ≡L between P and S when layered composition

is replaced by step-composition in the CCL-law.

Theorem 4.3 (≡L-CCL with ✄-composition). Given ETA A1, B1, and wrapped
ETA [A2], [B2], with A1 6⌢ B2 and B1 6⌢ A2. Then the CCL law

(A1 ✄ [A2]) ‖ (B1 ✄ [B2]) ≡L (A1‖B1)✄ ([A2] ‖ [B2])(CCL-step-L)

holds for the layered reachability equivalence ≡L.

Proof. Let P = (A1✄ [A2]) ‖ (B1✄ [B2]) and S = (A1 ‖B1)✄ ([A2] ‖ [B2]). We show
P ≡L S. Consider a location pair la ∈ LA1 , lb ∈ LB1 in the first layer consisting of
A1 and B1. Then clearly (la, lb) ∈ Reachloc(P) iff (la, lb) ∈ Reachloc(S).

54 4 Structural Transformations for Extended Timed Automata

Now consider a location pair la ∈ LA2 , lb ∈ LB2 in the second layer consisting
of A2 and B2. If (la, lb) ∈ Reachloc(S) then clearly (la, lb) ∈ Reachloc(P) as any
path of P can mimic the path of S reaching (la, lb).

The only difficult case is (la, lb) ∈ Reachloc(P). It implies that individually A1

and B1 have terminated and taken their steps to the initial locations of A2 and
B2 before reaching la ∈ LA2 and lb ∈ LB2 inside P . Since A1 6⌢ B2 and B1 6⌢ A2,
reaching la ∈ LA2 does not depend on events of B2, and vice versa, reaching lb ∈ LB2

does not depend on events of A2. Furthermore, since A2 and B2 are wrapped, they
may idle for an arbitrary time and then start taking one of their initial edges. Thus
(la, lb) ∈ Reachloc(S) by first waiting for the termination of both A1 and B1, next
taking the joint step to the initial locations of A2 and B2, and then continuing in
A2 and B2 to reach la and lb. ⊓⊔

P :

A1:

x ≤ 10

lFA1

x := 0

✄

A2:

x ≤ 15

la

go := true x > 14

B1:

lFB1

y := 0 y > 29

✄

B2:

y ≤ 2

lb

go

S:

A1:

x ≤ 10

lFA1

x := 0

B1:

lFB1

y := 0 y > 29

✄

A2:

x ≤ 15

la

go := true x > 14

B2:

y ≤ 2

lb

go

Fig. 4.3. Here A2 and B2 are not wrapped. Initially, the Boolean variable go is
false. Then – unlike in Theorem 4.3 – P and S have different reachable locations
within layer 2: (la, lb) ∈ Reachloc(P) but (la, lb) 6∈ Reachloc(S).

Remark 4.4. 1. We show that wrapped A2 and B2 are necessary for Theorem 4.3
to hold. In Figure 4.3 the ETA A2 and B2 are not wrapped. On the left-hand
side the parallel composition P is displayed and on the right-hand side the
step composition S. In P the transition of A2 can be taken after at most 25
seconds global time, setting the Boolean variable go to true, and the transition
of B2 checks the guard go after more than 29 seconds global time, which is then
found true. Hence (la, lb) ∈ Reachloc(P). However, in S the final location pair

4.4 Precedence CCL 55

(lFA1
, lFB1

) is reached only after 29 seconds global time (with x > 19 due to
the local reset of x). Thus the invariant x ≤ 15 in the initial location of A2 is
violated. So (la, lb) 6∈ Reachloc(S), violating Theorem 4.3.
Even if the clocks x and y were reset anew at the joint step in S, the invariant
y ≤ 2 of the initial location of B2 would force the transition of B2 to check
its guard go when it is still false because the transition of A2 setting go to
true is taken only after 14 seconds. So (la, lb) 6∈ Reachloc(S), again violating
Theorem 4.3.
However, wrapping A2 and B2 will add new initial locations with the invariant
true to A2 and B2, and the transitions leaving this new location will reset the
clocks x and y. Then (la, lb) ∈ Reachloc(P) and (la, lb) ∈ Reachloc(S), thus
preserving Theorem 4.3.

2. We may generalize Theorem 4.3 to multiple parallel and step instances of ETA,
as with Theorems 4.1 and 4.2. Thus, if there are no cross-interferences, i.e.,
Ai,j 6⌢ Ak,l for i 6= k and j 6= l, and if all Ai,j for 2 ≤ i ≤ n are wrapped, then

A1,1

✄

· · ·
✄

[An,1]

∥∥∥∥∥∥∥∥∥∥

· · ·
· · ·
· · ·
· · ·
· · ·

∥∥∥∥∥∥∥∥∥∥

A1,m (A1,1 ‖ · · · ‖ A1,m)
✄ ✄

· · · ≡L · · · · · · · · ·
✄ ✄

[An,m] ([An,1] ‖ · · · ‖ [An,m])

4.4 Precedence CCL

We now introduce a semantic condition termed precedence and demonstrate its use in
establishing equivalences analogous to Theorems 4.1, 4.2, and 4.3 for ETA networks
that do not respect the non-interference conditions discussed in the previous section.

Definition 4.16 (Precedence ≺ in ETA). For ETA A1, A2 and C1, C2, where
the final location lFA1

of A1 has no outgoing edge, we say that A1 precedes A2

in the parallel context of C1 and C2, denoted A1 ≺C1,C2 A2 if for each state
((lA1 , lC1, lA2, lC2),x,u) ∈ Reach(A1‖C1‖A2‖C2) and each edge e2 of A2 that is
enabled at this state, lA1 = lFA1

holds, i.e., A1 is at its final location.

Informally, events of A2 depend on the completion of A1, even in the parallel
context with C1 and C2. In practice, for this semantic property sufficient syntac-
tic conditions on the data or clock parts of the guards of edges are checked. For
example, a timed precedence might be formalized by considering a single clock x
shared between A1 and A2, constrained at every location of A1 except for lF1 by
the invariant x ≤ 10, with every edge of A1 being unguarded and without resets on
x, and with every initial edge of A2 guarded by the clock condition x > 10. Thus,
in this setting A1 needs at most 10 seconds to terminate, and A2 needs at least 10
seconds to start, which then ensures that A1 precedes A2 in any parallel context. A
data precedence might be formalized using a Boolean variable go that is initialized
with false. If every initial edge of A2 checks the Boolean condition go and only those
edges leading to the final location of A1 have the update go := true then A2 can
only start after A1 has terminated, provided the parallel context with C1 and C2

does not set go to true.

56 4 Structural Transformations for Extended Timed Automata

While the po- and layered reachability equivalences of the preceding section
exploit non-interference together with (wrapping-simulated) local time, precedence
exploits the implicit synchronization due to global time or the write-read order due
to interference from having shared data variables, giving the stronger reachability
equivalence ≡ under certain “cross-precedence” conditions in compositions of ETA,
as indicated by the following theorem.

Theorem 4.4 (≺-CCL with •-composition). For ETA A1, A2 and B1, B2 with
the precedence conditions A1 ≺A2,B1 B2 and B1 ≺A1,B2 A2 the precedence commu-
nication closed layer law

(A1 •A2)‖(B1 •B2) ≡ (A1‖B1) • (A2‖B2)(PrecCCL)

holds for the reachability equivalence ≡ .

Proof. We show (A1 •A2)‖(B1 •B2) ≡ (A1‖B1)• (A2‖B2), i.e., the sets of reachable
states are equal at every iteration i of their transition relations, where we identify
location tuples (lA1 , lA2 , lB1 , lB2) appearing in the states of the LHS with reordered
location tuples (lA1 , lB1 , lA2 , lB2) appearing in the states of the RHS.

The containment Reachi((A1‖B1) • (A2‖B2)) ⊆ Reachi((A1 • A2)‖(B1 • B2))
is easy to check, as the parallel composition operator dominates on the right-hand
side and the layered composition operator on the left-hand side. The dominance
of layered composition induces fewer interleavings on the basis of the respective
dependencies, as seen from the earlier definitions.

We now show Reachi((A1 • A2)‖(B1 • B2)) ⊆ Reachi((A1‖B1) • (A2‖B2)) by
induction over i.
Induction Basis. This case i = 0 is obvious.
Assume that the containment holds for some i.
Induction Step. Consider ((lA1 , lA2 , lB1 , lB2),x,u) ∈ Reachi+1((A1 •A2)‖(B1 •B2)).

If ((lA1 , lA2 , lB1 , lB2),x,u) ∈ Reachi((A1 • A2)‖(B1 • B2)) the proof is imme-
diate from the induction hypothesis. We now examine ((lA1 , lA2 , lB1 , lB2),x,u) ∈
Succ(Reachi((A1 •A2)‖(B1 •B2)). If i is even, the preceding transition corresponds
to time-passage, which is possible also in (A1‖B1) • (A2‖B2), and the proof then
follows immediately. If i is odd, the preceding transition could have been performed
either by (a1) A1, (a2) B1, (a3) A2, (a4) B2 individually, or as a synchronization
involving A1 and A2, A1 and B1, A1 and B2, A2 and B1, A2 and B2.

The cases (a1) and (a2) are relatively straightforward. The cases (a3) and (a4) re-
quire more care. We consider case (a3) in detail. There exist ((lA1 , lA2 , l

′
B1
, lB2)),x

′,u′) ∈
Reachi((A1 • A2)‖(B1 • B2)) and an edge e2 = (l′A2

, a, g, r, lA2) of A2 which
can occur at the location (lA1 , lA2 , l

′
B1
, lB2) of ((A1 • A2)‖(B1 • B2)) such that

(x′,u′) ∈ Inv(lA1 , lA2 , l
′
B1
, lB2)∩g, with x = r(x′), u = r(u′). Hence e2 is permitted

by the layered composition with A1, i.e., from lA1 there is no location syntactically
reachable where an edge e1 with e1 ⌢ e2 starts. Moreover, the precedence condition
B1 ≺A1,B2 A2 implies that lB1 = lFB1

, i.e., B1 is at its final location. Therefore e2
can also occur at ((lA1 , lB1 , l

′
A2
, lB2),x

′,u′) ∈ Reachi((A1‖B1) • (A2‖B2)), yielding
((lA1 , lB1 , lA2 , lB2),x,u) ∈ Reachi+1((A1‖B1) • (A2‖B2)).

Each of the synchronization cases combines two individual edges labeled with
complementary actions yielding the label τ . For the individual edges the argument
is the same as above. ⊓⊔

4.5 Separation and Flattening 57

The following theorem looks at the Precedence CCL with layered composition
replaced by sequential composition.

Theorem 4.5 (≺-CCL with ;-composition). Theorem 4.4 remains valid when
replacing • by ; in the ETA expressions:

(A1;A2)‖(B1;B2) ≡ (A1‖B1); (A2‖B2).(PrecCCL-seq)

Proof. We show (A1;A2)‖(B1;B2) ≡ (A1‖B1); (A2‖B2), i.e., the sets of reachable
states are equal at every iteration i of their transition relations, where the locations
appearing in the states on both sides are now of the form (lA, lB). The proof has
the same structure as the one of Theorem 4.4, except for changes taking ; instead
of • in account. We focus on the induction step i −→ i + 1 of the proof of (now)
Reachi((A1;A2)‖(B1;B2)) ⊆ Reachi((A1‖B1); (A2‖B2)).

Consider ((lA, lB),x,u) ∈ Reachi+1((A1;A2)‖(B1;B2)) and case (a3) as in
the proof of Theorem 4.4, where the transitions stems from A2. There exist
((l′A, lB),x

′,u′) ∈ Reachi((A1;A2)‖(B1;B2)) and an edge e2 = (l′A, a, g, r, lA)
of A2 which can occur at the location (l′A, lB) of ((A1;A2)‖(B1;B2)) such that
(x′,u′) ∈ Inv(l′A, lB) ∩ g, with x = r(x′), u = r(u′). Clearly, e2 occurs after termi-
nation of A1. Moreover, the precedence condition B1 ≺A1,B2 A2 implies here that
e2 occurs after termination of B1. Therefore e2 can also occur at ((l′A, lB),x

′,u′) ∈
Reachi((A1‖B1); (A2‖B2)), yielding ((lA, lB),x,u) ∈ Reachi+1((A1‖B1); (A2‖B2)).
⊓⊔

Remark 4.5. 1. Unlike the CCL law of Theorem 4.1, the Precedence CCL law of
Theorems 4.4 does not hold for the equality =. Note also that Theorem 4.5 does
not require the ETA A2 and B2 to be wrapped, in contrast to Theorems 4.2 and
4.3. This is because due to the precedence relation, even in (A1;A2)‖(B1;B2)
the ETA A2 and B2 can only start when both A1 and B1 have terminated, and
then A2 and B2 can start at the same global time as in (A1‖B1); (A2‖B2). As
≡ is not a congruence w.r.t. parallel composition, the Precedence CCL laws do
not yield equivalences in an arbitrary parallel context.

2. Generalizations of Theorems 4.4 and 4.5 to multiple parallel, layered, and
sequential instances of ETA require strong precedence conditions. Thus, if
Ai,j ≺{Ap,q} Ak,l for all i < k and j < l in the parallel context of all other
Ap,q, then:

A1,1

•
· · ·
•

An,1

∥∥∥∥∥∥∥∥∥∥

· · ·
· · ·
· · ·
· · ·
· · ·

∥∥∥∥∥∥∥∥∥∥

A1,m (A1,1 ‖ · · · ‖ A1,m)
• •
· · · ≡ · · · · · · · · ·
• •

An,m (An,1 ‖ · · · ‖ An,m)

This also holds also under identical precedence conditions with • replaced by ; .

4.5 Separation and Flattening

In this section, we consider two transformations on cycles in ETA. Separation re-
duces the nesting of cycles, while flattening reduces the number of cycles. These

58 4 Structural Transformations for Extended Timed Automata

transformations are sound (in the sense of reachability preservation) under the as-
sumption that the ETA involved have memoryless cycles. Such an assumption is
justified for protocols where each cycle performs some service, and there is no need
to carry over some information from one service cycle to the next. Separation was
studied in [Coh00] in the setting of Kleene algebras, where, under certain conditions,
a nondeterministic iteration of the form (a+ b)∗ could be separated into a sequence
a∗b∗ of iterations, with a and b being regular expressions for programs in a Kleene
algebra. Iteration is implicit in ETA, as cycling through locations is permitted in the
model (except possibly through the final location in some cases, cf. Definition 4.5).
The + operator for non-deterministic choice on regular expressions is adapted to
the setting of ETA as follows:

Definition 4.17 (Choice +-composition). For ETA Ai = (Li, Σi, Ci, Vi, l0i , lFi , Invi, Ei),
i ∈ {1, 2}, with L1 ∩ L2 = ∅, the choice composition of A1 and A2 is defined as the
ETA A1 +A2 = (L1 ∪L2 ∪ {l0, lF }, Σ1 ∪Σ2, C1 ∪C2, V1 ∪ V2, l0, lF , Inv,E),, where
l0, lF 6∈ L1 ∪ L2, Inv(li) = Invi(li) for li ∈ Li and i = 1, 2,
Inv(l0) = Inv1(l01) ∧ Inv2(l02), and

E = {(l0, a, g, r, l) | (l01 , a, g, r, l) ∈ E1∨(l02 , a, g, r, l) ∈ E2}∪{(lFi , ε, true, ∅, lF) | i = 1, 2}∪E1∪E2.

This operator + for choice composition of ETA implements the corresponding
rules of operational semantics in CCS [Mil89], where A1

a−→B1 and A2
b−→B2 imply

that A1+A2
a−→B1 and A1+A2

b−→B2. In the above definition, the new location l0
mimics the process algebraic expression A1 +A2. While the initial locations l01 and
l02 may be re-entered in A1 resp. A2, the initial transitions of A1+A2 from the new
location l0 unfold initial cycles, such that once an initial transition of A1 has been
executed in A1+A2, the other component A2 will never be executed, and vice-versa.
Such a non-deterministic choice between the execution of component ETA may be
enforced in practice by appropriate invariants and guards on the clocks and data
variables, as will be seen in the next section.

In some applications one component may have to be (re-)entered even after the
other has been executed, as will again be seen in the next section. To this end, the
following union operator (adapted from the UNITY program notation [CM88]) is
needed to suitably glue the two component ETA together, where the initial and final
locations of a given ETA are identical.

Definition 4.18 (Union ∪). For ETA Ai = (Li, Σi, Ci, Vi, l0i , l0i , Invi, Ei), i ∈
{1, 2}, with L1 ∩ L2 = ∅, the union of A1 and A2 is defined by the ETA

A1 ∪A2 = (L1 ∪ L2 ∪ {l0} \ {l01, l02}, Σ1 ∪Σ2, C1 ∪ C2, V1 ∪ V2, l0, l0, Inv,E)

where l0 is disjoint from L1 ∪ L2, Inv(li) = Invi(li) for li ∈ Li and i = 1, 2,
Inv(l0) = Inv1(l01) ∧ Inv2(l02), and E is given by

4.5 Separation and Flattening 59

E =(E1 \ {{(l01, a1, g1, r1, l1) | (l01, a1, g1, r1, l1) ∈ E1}∪
{(l1, a1, g1, r1, l01) | (l1, a1, g1, r1, l01) ∈ E1}})

∪ {l0, a1, g1, r1, l1) | (l01, a1, g1, r1, l1) ∈ E1 ∧ l1 6= l01}
∪ {(l1, a1, g1, r1, l0) | (l1, a1, g1, r1, l01) ∈ E1 ∧ l1 6= l01}
∪ {(l0, a1, g1, r1, l0) | (l01, a1, g1, r1, l01) ∈ E1})
∪ (E2 \ {{(l02, a2, g2, r2, l2) | (l02, a2, g2, r2, l2) ∈ E2}∪

{(l2, a2, g2, r2, l02) | (l2, a2, g2, r2, l02) ∈ E2}})
∪ {l0, a2, g2, r2, l2) | (l02, a2, g2, r2, l2) ∈ E2 ∧ l2 6= l02}
∪ {(l2, a2, g2, r2, l0) | (l2, a2, g2, r2, l02) ∈ E2 ∧ l2 6= l02}
∪ {(l0, a2, g2, r2, l0) | (l02, a2, g2, r2, l02) ∈ E2}.

The first five lines in the construction of E in A1 ∪ A2 deal with edges of A1 that
either leave or enter l01, while the last five lines deal with edges of A2 that either
leave or enter l02. The set of edges E is obtained by appropriately assigning l0 as the
target or source location for edges in E1 entering or leaving l01 and for edges in E2

entering or leaving l02. While in the sequential composition A1;A2 we require that
l01 6= lF 1 and l02 6= lF 2 with no outgoing edges from lF 1, which is amalgamated
with l02 into l̃F 1, the union A1∪A2 requires that l01 = lF 1 and l02 = lF 2, which are
then amalgamated into l0. Whereas in the union A1 ∪A2 possible cycles of A1 and
A2 are glued together in their initial location, in A1 ✄A2 the new step transition t
separates the A1 cycles from the A2 cycles so that all A1 cycles are performed before
the A2 cycles, while in A1+A2 either the cycles of A1 are performed or those of A2,
but not both. The subtle difference between the ∪ and + operators is illustrated in
Figure 4.4.

A1:

l01

a

c

A2:

l02

b

d

A1 ∪A2:

l0

A1 +A2:

l0

a a

c

b b

d

c

a

d

b

Fig. 4.4. The difference between ∪ and + becomes apparent when there are loops
at the initial locations. While ∪ glues them simply together, + unfolds them before
joining. Data and timing aspects have been abstracted away for simplicity.

An alternate definition of the ∪ operator for TA may be found in [BP99]. The
Separation Theorems 4.6 and 4.7 examine (cyclic) behaviours of the ∪ and ✄ op-
erators on ETA under memoryless initial locations, where the notion of a location
being memoryless is as defined below:

60 4 Structural Transformations for Extended Timed Automata

Definition 4.19 (Memoryless locations in ETA). A location l of an ETA A is
said to be memoryless if l is always entered with the same valuations of the clocks
and the data variables.

A sufficient syntactic condition for a location l to be memoryless is that all
cycles through l have strong resets. A cycle of an ETA A through a location l is
said to have strong resets if every transition entering l resets all clocks and all data
variables to their initial valuations. To simplify the reasoning about cycles, we wish to
transform the union of ETA with memoryless cycles into their step composition. The
Separation Theorem 4.6 shows that this transformation respects a weak reachability
equivalence ≡r sufficient for the preservation of safety properties, as seen next.

Definition 4.20 (Weak reachability equivalence ≡r). Consider ETA A =
(L,Σ,C, V, l0, lF , Inv,E) and
A′ = (L′, Σ,C, V, l0

′, lF
′, Inv′, E′) defined over the same alphabet Σ and the same

sets of clocks C and data variables V , with |C| = n and |V | = m. We define the
weak reachability equivalence between A and A′, denoted by A ≡r A

′, relative to a
relation ≈ ⊆ L× L′, if

∀ l ∈ L ∀ l′ ∈ L′ ∀x ∈ R
n
≥0 ∀v ∈ Dm :

1. (l,x,v) ∈ Reach(A) ⇒ ∃ l′ ∈ L′ : l ≈ l′ ∧ (l′,x,v) ∈ Reach(A′)

2. (l′,x,v) ∈ Reach(A′) ⇒ ∃ l ∈ L : l ≈ l′ ∧ (l,x,v) ∈ Reach(A)

where ≈ preserves location invariants, i.e., if l ≈ l′ then Inv(l) = Inv′(l′).

Definition 4.20 of ≡r is a relaxation of the notion of “emulation” introduced in
Definition 2 of [CJ99]. The following theorem shows the preservation of ≡r by sep-
aration.

Theorem 4.6 (Separation). Consider ETA A1 and A2 as in Definition 4.18 with
memoryless initial locations l01 and l02, both of which are (re-)entered with the
designated initial clock and data valuations 0 and v0, respectively. Then A1∪A2 ≡r

A1 ✄ A2 relative to the relation ≈ between the locations of A1 and A2, given by
∀l ∈ (L1 ∪ L2) \ {l0} : l ≈ l and l0 ≈ l01 and l0 ≈ l02. See Figure 4.5.

A1 ∪A2: A1 A2l0 A1 ✄A2: A1 A2l01 l02

Fig. 4.5. This figure illustrates the effect of separation. Data and timing aspects
have been abstracted away for simplicity.

Proof. Let A = A1 ∪ A2 and Π(A) denote the set of all paths of A. Then a path
π ∈ Π(A) may repeatedly cycle through A1 and A2 in any order. We show that such
a path π may be transformed into one of A′ = A1 ✄ A2, consisting of consecutive

4.5 Separation and Flattening 61

paths of A1 followed by consecutive paths of A2 plus possibly some extra final part,
while preserving weak reachability of configurations in the sense of ≡r relative to
the location-relation ≈.

We have that Reach(A) =
⋃

π∈Π(A)Reach(π), where Reach(π) denotes the

states of A that are reachable along π. Consider a typical path π ∈ Π(A), for
example of the form π = {l0}π1{l0}π2{l0}π̃1{l0}π̃2{l0}πfin1, where the assertion
{l0} indicates that the control resides in the initial location l0. The paths π1 and π̃1

represent cycles through A1, the paths π2 and π̃2 represent cycles through A2, and
πfin1 represents the (possibly empty) final part of π, say inside A1, that does not
reach l0 again. So π alternates twice between A1 and A2 before finishing inside A1.

Since both l01 and l02 are memoryless, and owing to the preservation by ≈ of
(downward closed) location invariants (cf. Definitions 4.1 and 4.20), the path π can
be transformed into two paths of A′ = A1 ✄A2, namely
π′ = {l01}π1{l01}π̃1{l01}t{l02}π2{l02}π̃2{l02} and π′

fin1 = {l01}πfin1, where t refers
to the stepping transition between A1 and A2 in A1 ✄A2.

For Condition 1 of ≡r, we calculate for any (l,x,v) ∈ Reach(π) the following:

(l,x,v) ∈ Reach(π)
⇒ (l,x,v) ∈ Reach(π1) ∪Reach(π2) ∪Reach(π̃1) ∪Reach(π̃2) ∪Reach(πfin1)
⇒ ∃l′ : l ≈ l′ ∧

(l′,x,v) ∈ Reach(π1) ∪Reach(π̃1) ∪Reach(t · π2) ∪Reach(π̃2) ∪Reach(πfin1)
⇒ ∃l′ : l ≈ l′ ∧ (l′,x,v) ∈ Reach(π′) ∪Reach(π′

fin1)

Thus altogether (l,x,v) ∈ Reach(A) ⇒ ∃l′ : l ≈ l′ ∧ (l′,x,v) ∈ Reach(A′) as
desired. The converse Condition 2 is shown similarly. ⊓⊔

While ≡r is not a congruence w.r.t. parallel composition in general, the fol-
lowing theorem states its preservation by parallel instances of separation under 6⌢-
conditions similar to those of Theorems 4.2 and 4.3.

Theorem 4.7 (Separation in parallel context). For ETA A1, B1, A2, B2 with
memoryless initial locations, with A2 and B2 wrapped and satisfying A1 6⌢ B2 and
B1 6⌢ A2, it holds that (A1 ∪ [A2])‖(B1 ∪ [B2]) ≡r (A1 ✄ [A2])‖(B1 ✄ [B2]).

Proof. Let L = (A1 ∪ A2)‖(B1 ∪ B2) and R = (A1 ✄ A2)‖(B1 ✄ B2). In L a path
π may repeatedly cycle through A1 and A2 in any order, interleaved with cycles
through B1 and B2 in any order. We have to show that π can be transformed into
a path π′ of R, where all cycles through A1 and B1 precede the cycles through A2

and B2.
By way of example, consider a typical part in a path

π = · · · {l0A}{l0B}πA21πB21πA22{l0A}πB22{l0B}πA11πB11πA12{l0A}πB12{l0B} · · ·

of L, where the path πA21πA22 represents a cycle through A2 and πA11πA12 a cycle
through A1, and analogously the path πB21πB22 represents a cycle through B2 and
πB11πB12 a cycle through B1. In π the cycles through A2 and A1 are shown inter-
leaved with the cycles through B2 and B1. The assertion {l0A} indicates that the
control resides in the joint initial location l0A of A1 and A2, and {l0B} indicates
that the control resides in the joint initial location l0B of B1 and B2.

We claim that π can be transformed into a path

π′ = · · · {l0A}{l0B}πA11πB11πA12{l0A}πB12{l0B}πA21πB21πA22{l0A}πB22{l0B} · · ·

62 4 Structural Transformations for Extended Timed Automata

of R. Indeed, after the second {l0A} the cycle πA21πA22 can start and after the
second {l0B} the cycle πB21πB22 . Since A2 and B2 are wrapped, these cycles need
not start immediately after {l0A} and {l0B}. For instance, πA21πA22 starts only after
the second {l0B} in π′ above. Since B1 6⌢ A2, no part of πA21πA22 interferes with
any part of πB11πB12 , and vice versa, since A1 6⌢ B2, no part of πB21πB22 interferes
with any part of πA11πA12 . Thus the cycles πA21πA22 and πB21πB22 could be pushed
back in π′. ⊓⊔

Remark 4.6. Generalization of Theorem 4.7 to multiple parallel, union, and step
instances of ETA is possible under side-conditions similar to those required for the
generalizations of Theorems 4.2 and 4.3, cf. Remarks 4.3 and 4.4. Thus, if there
are no cross-interferences, i.e., Ai,j 6⌢ Ak,l for i 6= k and j 6= l, and if all Ai,j for
2 ≤ i ≤ n are wrapped, then

A1,1

∪
· · ·
∪

[An,1]

∥∥∥∥∥∥∥∥∥∥

· · ·
· · ·
· · ·
· · ·
· · ·

∥∥∥∥∥∥∥∥∥∥

A1,m A1,1

∪ ✄

· · · ≡r · · ·
∪ ✄

[An,m] [An,1]

∥∥∥∥∥∥∥∥∥∥

· · ·
· · ·
· · ·
· · ·
· · ·

∥∥∥∥∥∥∥∥∥∥

A1,m

✄

· · ·
✄

[An,m]

The next theorem states that an ETA with a memoryless location l can be
flattened into one that contains fewer cycles through l, while preserving ≡r.

Theorem 4.8 (Flattening). Consider an ETA A∗ = (L,Σ,C, V, l0, lF , Inv,E
∗)

with a memoryless location l ∈ L. Then Al = (L,Σ,C, V, l0, lF , Inv,El) satisfies
A∗ ≡r Al, where

El = E∗ \ { e | target(e) = l and no cycle-free syntactic path from l0 to l in A∗ contains e},

Proof. By construction, Al keeps all edges that are needed to reach l from l0
along a cycle-free syntactic path. Consider a path π of A∗, say of the form
π = {l0}π1{l} · · ·πn{l}πfin, where the assertion {l0} (resp. {l}) indicates that the
control resides in the location l0 (resp. l). As l is first reached along π1, each πi

with i = 2, . . . , n represents a subsequent cycle of A∗ through l, and πfin represents
the (possibly empty) final part of π that does not reach l again. Since l is mem-
oryless, every state that is reachable along the path π in A∗ is also reachable in
Al along the following set of paths: π1,2 = {l0}π1{l}π′

2, . . . , π1,n = {l0}π1{l}π′
n,

π1,fin = {l0}π1{l}πfin, where π
′
i is the path πi without the last transition reentering

the location l, for i = 2, . . . , n. Thus A∗ ≡r Al with identity as the location relation.
⊓⊔

If El ⊂ E∗ then Al is a flattened version of A∗ with a reduced number of cycles
through l. Note that flattening at l0 will remove every edge e with target(e) = l0
because no edge is needed to reach the initial location l0. So Al0 is cycle-free at l0.
Next, we consider flattening of A∗ in the context of a parallel composition A∗‖B
and state sufficient conditions for the preservation of location reachability.

Theorem 4.9 (Flattening in parallel context). Suppose that for A∗ and B,
where A∗ is memoryless at la ∈ LA, the following holds within A∗‖B:

4.6 Example: Real-Time Mutual Exclusion 63

1. Every location of A∗ is reachable from its initial location l0A without visiting la
more than once, while B stays in its initial location l0B.

2. Every location of B is reachable from l0B, while A
∗ stays in la.

3. If a transition entering la enables a transition of B with target lb then every
location of A∗ is reachable from la without visiting la again, while B is in lb.

Then Reachloc(A∗‖B) = Reachloc(Ala‖B).

Proof. Clearly, Reachloc(Ala‖B) ⊆ Reachloc(A∗‖B) as all edges of Ala are present
in A∗. Thus it suffices to show the reverse inclusion. We prove by induction on
the transition steps that for every location pair: (l1, l2) ∈ Reachloc(A∗‖B) implies
(l1, l2) ∈ Reachloc(Ala‖B).

Induction Basis. Clearly, the claim holds for the pair (l0A, l0B) of initial locations.

Induction Hypothesis. Suppose the claim holds for (l1, l2).

Induction Step. For location reachability, it suffices to consider the interleaving of
A∗- and B-transitions.

Case 1. Consider an A∗-transition ta leading from l1 to l′1.
The only interesting subcase is that ta has been removed in Ala . By construction
of Ala , we have l′1 = la, and there exists on the path from l0A to l1 in A∗ a first
occurrence of la that is reached also in Ala . Then (l′1, l2) = (la, l2) is reachable in
Ala as follows. First, proceed from (l0A, l0B) to (la, l0B) by taking transitions in Ala

only. This is possible due to Condition 1. Second, proceed from (la, l0B) to (la, l2)
by taking transitions in B only. This is possible due to Condition 2.

Case 2. Consider an B-transition tb leading from l2 to l′2.
The only interesting subcase is that a transition ta entering la enables tb but ta
has been removed in Ala . Then (l1, l

′
2) is reachable in Ala as follows. First, proceed

from (l0A, l0B) to (la, l0B) by taking transitions in Ala only. This is possible due to
Condition 1. Next, proceed from (la, l0B) to (la, l

′
2) by taking transitions in B only.

This is possible due to Condition 2. Then proceed from (la, l
′
2) to (l1, l

′
2) by taking

transitions in Ala only. This is possible due to Condition 3. ⊓⊔

Remark 4.7. In contrast to all the other transformations, flattening in a parallel con-
text does not easily generalize to multiple parallel instances, and the three itemized
conditions of Theorem 4.9 above require an exploration of the reachable state space.
Such an exploration however does not entail a complete resolution of the ‖ operator
in A∗‖B, as each of the above conditions reduces to a local reachability check of A∗

resp. B, with control residing at a fixed location of B resp. A∗. For the case where B
is itself composed of multiple parallel ETA, a limited resolution of ‖ within B may
be necessary in order to verify the second reachability condition of Theorem 4.9.
The above reachability checks may nonetheless be localized within a layer if the
flattening is performed subsequent to separation and layering, as will be shown in
the next section.

4.6 Example: Real-Time Mutual Exclusion

Consider two processes A and B competing for two critical sections cs1 and cs2.
We safeguard these sections by a double Fischer protocol DF obtained by taking for

64 4 Structural Transformations for Extended Timed Automata

A1∗:

A2∗:

cs1A

remA

wait1A

req1A
x ≤ 5

req2A
x ≤ 5

wait2A

remA

cs2A

i = 0
x := 0

i := 1
x := 0

i = 1

x > 10

i := 0

x := 0

i = 0

j := 1
x := 0

j = 0
x := 0

x > 10

j = 1

j := 0

j = 0

x := 0

B1∗:

B2∗:

cs1B

remB

wait1B

req1B
y ≤ 5

req2B
y ≤ 5

wait2B

remB

cs2B

i = 0
y := 0

i := 2
y := 0

i = 2

y > 10

i := 0

y := 0

i = 0

j := 2
y := 0

j = 0
y := 0

y > 10

j = 2

j := 0

j = 0

y := 0

Fig. 4.6. Double Fischer protocol DF = (A1∗∪ [A2∗]) ‖ (B1∗∪ [B2∗]) for processes
A and B accessing two critical sections cs1 and cs2. Left : ETA A1∗ ∪ [A2∗]; right :
ETA B1∗∪[B2∗]. In this and all subsequent figures, we omit the ε-labels of all edges.

each process the union of two copies of Fischer’s real-time protocol. We represent
DF by the following composition of ETA:

DF = (A1∗ ∪ [A2∗]) ‖ (B1∗ ∪ [B2∗]),

where A1∗, A2∗ are the two copies of Fischer’s protocol used by process A, and
B1∗, B2∗ the two copies used by process B, cf. Fig. 4.6. The stars ∗ indicate the
presence of cycles. In locations cs1A and cs2A process A accesses the critical sections
cs1 and cs2, respectively, and in cs1B and cs2B process B does so. Initially, A and
B need not access the critical sections and are busy with remaining activities in the
initial locations remA and remB , whose conditions permit the wrapping of all ETA,
and in particular A2∗ and B2∗. In req1A, req2A and req1B , req2B the processes A
and B request access to cs1, cs2. The locations wait1A, wait2A and wait1B , wait2B
represent waiting of A and B for cs1, cs2. The parallel ETA in DF use disjoint (but
synchronous) clocks x and y, while sharing the data variables i and j that range
over 0, 1, 2 and are initialized with 0. These values indicate whether (0) none of the
processes, (1) process A, or (2) process B wants to access cs1 or cs2, respectively.
In these ETA, all edges are labelled by ε-actions. Synchronization between the ETA
takes place via guards checking the values of the shared variables i and j.

We wish to prove that DF satisfies the double mutual exclusion property

DMX = ✷¬(cs1A ∧ cs1B) ∧ ✷¬(cs2A ∧ cs2B).

Thus,DMX is a conjunction of two layered reachability propertiesMX1 = ✷¬(cs1A∧
cs1B) and MX2 = ✷¬(cs1A ∧ cs1B) for the ETA composition DF , whose first layer
consists of A1∗ and B1∗, and whose second layer consists of A2∗ and B2∗.

We simplify the verification task now by a series of structural transformations
so that it finally becomes almost trivial.

4.6 Example: Real-Time Mutual Exclusion 65

1. Separation.

We apply the separation transformation to DF and obtain two single versions of
Fischer’s protocol separated by an extra transition, cf. Fig. 4.7. This is possible due
to A1∗ 6⌢ B2∗ and B1∗ 6⌢ A2∗. The result is

SDF = (A1∗ ✄ [A2∗]) ‖ (B1∗ ✄ [B2∗]).

By the Separation Theorem 4.7, we have DF ≡r SDF .

A1∗:

A2∗:

cs1A

rem1A

wait1A

req1A
x ≤ 5

req2A
x ≤ 5

wait2A

rem2A

cs2A

i = 0
x := 0

i := 1
x := 0

i = 1

x > 10

i := 0

x := 0

i = 0

j := 1
x := 0

j = 0
x := 0

x > 10

j = 1

j := 0

j = 0

x := 0

B1∗:

B2∗:

cs1B

rem1B

wait1B

req1B
y ≤ 5

req2B
y ≤ 5

wait2B

rem2B

cs2B

i = 0
y := 0

i := 2
y := 0

i = 2

y > 10

i := 0

y := 0

i = 0

j := 2
y := 0

j = 0
y := 0

y > 10

j = 2

j := 0

j = 0

y := 0

Fig. 4.7. Separated version of double Fischer: SDF = (A1∗✄[A2∗]) ‖ (B1∗✄[B2∗]).

2. Layering.

To apply layering to SDF , we calculate:

SDF = (A1∗ ✄ [A2∗]) ‖ (B1∗ ✄ [B2∗])

≡L { Theorem 4.3, using A1∗ 6⌢ B2∗ and B1∗ 6⌢ A2∗}
(A1∗ ‖B1∗) ✄ ([A2∗] ‖ [B2∗]) = LDF

LDF stands for layered double Fischer. The component ETA of LDF are obtained
from the ETA shown in Fig. 4.7 by cutting these at rem2A and rem2B . The result
is shown in Fig. 4.8.

To prove that DF satisfies DMX, it suffices to do this for LDF . Since step
composition is the top operator in LDF , it suffices to show that both step com-
ponents, L1 = A1∗‖B1∗ and L2 = [A2∗] ‖ [B2∗], individually satisfy DMX. As
DMX = MX1 ∧MX2, where MX1 is confined to L1 and MX2 is confined to L2

(cf. the formulation of DMX earlier in this section), this further reduces to showing
separately that L1 satisfies MX1 and that L2 satisfies MX2.

66 4 Structural Transformations for Extended Timed Automata

A1∗:

A2∗:

cs1A

rem1A

wait1A

req1A
x ≤ 5

req2A
x ≤ 5

wait2A

rem2A

cs2A

i = 0
x := 0

i := 1
x := 0

i = 1

x > 10

i := 0

x := 0

i = 0

j := 1
x := 0

j = 0
x := 0

x > 10

j = 1

j := 0

j = 0

x := 0

✄

B1∗:

B2∗:

cs1B

rem1B

wait1B

req1B
y ≤ 5

req2B
y ≤ 5

wait2B

rem2B

cs2B

i = 0
y := 0

i := 2
y := 0

i = 2

y > 10

i := 0

y := 0

i = 0

j := 2
y := 0

j = 0
y := 0

y > 10

j = 2

j := 0

j = 0

y := 0

Fig. 4.8. Layered version of double Fischer: LDF = (A1∗ ‖B1∗) ✄ ([A2∗] ‖ [B2∗]).

A1∗: A1 = A1req1A,rem1A :

cs1A

rem1A

wait1A

req1A
x ≤ 5

cs1A

rem1A

wait1A

req1A
x ≤ 5

i = 0
x := 0

i := 1
x := 0

i = 1

x > 10

i := 0

x := 0

i = 0

i := 1
x := 0

i = 1

x > 10

x := 0

i = 0

A1req1A :

cs1A

rem1A

wait1A

req1A
x ≤ 5

i := 1
x := 0

i = 1

x > 10

i := 0

x := 0

i = 0

Fig. 4.9. Flattening A1∗ at location req1A yields A1req1A and flattening this ETA
at location rem1A yields the cycle-free ETA A1 = A1req1A,rem1A .

3. Flattening.

We remove all cycles in A1∗, B1∗, A2∗, B2∗ and show this in detail for A1∗ in Fig. 4.9.
Flattening A1∗ at req1A is possible, since whenever req1A is entered, i = 0 and
x = 0 holds. Flattening the resulting A1req1A at rem1A does not seem possible at
first sight because only the data variable i is reset to 0. However, we may safely
add x := 0 because this clock reset occurs when rem1A is left, and because x
occurs neither in the invariant of rem1A nor in the guard of its outgoing transition.
Note also that the additional three conditions of Theorem 4.9 hold for A1∗ at the
locations req1A and rem1A. Hence, we arrive at A1 = A1req1A,rem1A without any
cycles. We may similarly flatten B1∗ at req1B and rem1B , yielding a corresponding
cycle-free ETA B1. It thus remains to show that two cycle-free versions of Fischer’s
protocol, A1 ‖B1 and A2 ‖B2, satisfy MX1 and MX2 respectively, where we have,

4.6 Example: Real-Time Mutual Exclusion 67

for i ∈ {1, 2}, Reachloc(Ai‖Bi) = Reachloc(Ai∗‖Bi∗) by Theorem 4.9, which is
sufficient for preserving MX1 and MX2 .

4. Precedence layering.

We prove that A1‖B1 satisfies MX1 . Consider the ETA A01, A11, A21, B01, B11,
and B21 shown in Fig. 4.10. As before, x and y are clocks, and i is a shared
data variable ranging over 0, 1, 2, initialized with 0. The ETA A01, A11, A21 rep-
resent three phases of A1 and B01, B11, B21 those of B1, such that A1‖B1 =
(A01;A11;A21) ‖ (B01;B11;B21).

A01:

rem1A

lA01

i = 0
x := 0

A11:

req1A
x ≤ 5

lA11

i := 1
x := 0

A21:

wait1A

cs1A

i = 1
x > 5

B01:

rem1B

lB01

i = 0
y := 0

B11:

req1B
y ≤ 5

lB11

i := 2
y := 0

B21:

wait1B

cs1B

i = 2
y > 5

Fig. 4.10. Six ETA for building Fischer’s protocol for single mutual exclusion of
two processes: A1 = A01;A11;A21 and B1 = B01;B11;B21.

We explore the interleavings of A01;A11;A21 with B01;B11;B21 by (partially)
expanding (as in CCS, cf. [Mil89], and as in [BS00]) the parallel composition in
A1‖B1. After A11 neither B01 nor B21 can occur due to the i-guard, and vice versa,
after B11 neither A01 nor A21 can occur. After A01‖B01 we observe that timewise (by
the synchronous evolution of the clocks x and y) B21 cannot proceed from wait1B to
cs1B (due to the clock guard y > 5) before A11 has left req1A (with clock invariant
x ≤ 5) to reach its final location lA11, and vice versa, A21 cannot proceed to cs1A
before B11 reaches its final location lB11. Thus A11 resp. B11 precedes B21 resp.
A21 in any parallel context. In particular, the precedences A11 ≺A21,B11 B21 and
B11 ≺A11,B21 A21 hold. Thus expansion and the law (PrecCCL-seq) of Theorem 4.5
yield

A1‖B1 ≡r (A01;A11;A21) + (B01;B11;B21) + (A01‖B01); ((A11;A21)‖(B11;B21))

≡ (A01;A11;A21) + (B01;B11;B21) + (A01‖B01); (A11‖B11); (A21‖B21) = SF1,

where + denotes a non-deterministic choice operator on ETA (cf. Definition 4.17),
and SF1 stands for sequential Fischer. Clearly, SF1 satisfies MX1 because after
A11‖B11 the data variable i stores either 1 or 2, and thus either A21 or B21 (but not
both) can proceed to their critical section. Since each of the equivalences induced
by our transformations (namely, ≡, ≡r, ≡L, and equality w.r.t Reachloc) is clearly
sufficient for MX1 , we then conclude that MX1 holds for SF1 (and consequently for
L1). One may easily conclude by symmetry that MX2 holds for L2. Thus, altogether,
DMX holds for DF as required.

68 4 Structural Transformations for Extended Timed Automata

Remark 4.8. While the example of this section considers two parallel timed processes
competing for access to two critical sections, it may be generalized to multiple crit-
ical sections and multiple parallel instances. The corresponding complex protocol
however admits analysis via generalizations of our transformations to multiple step
and parallel instances (cf. Remarks 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7).

4.7 Conclusion

We conclude this chapter with a discussion on additional references to the litera-
ture. Early work on distributed systems considered “regularity” conditions [Boc79,
Boc88], under which the system behaviour is independent of communication delays,
thus simplifying its (semi-formal) design and analysis. The regularity conditions
therein (specified in a discrete-time setting) roughly correspond to our notion of
wrapping, where timing influences from other parallel components are likewise de-
coupled.

A constraint-based decompositional proof methodology was illustrated in [LSW96]
on the standard Fischer’s protocol, formalized as a timed modal specification. More
recently, an analysis of TA networks with “disjoint phases of activity” has been car-
ried out in [MWP12], where it has been shown that the parallel composition of two
TA (without shared data variables) is bisimilar to their sequential composition, if
the TA exhibit certain periodic but non-overlapping behaviours. A transformation
approach (roughly corresponding to a non-local version of our flattening, comple-
mented by a notion of edge-redirection) for the simplified assume-guarantee verifica-
tion of ETA networks, with application to Fischer’s mutual exclusion protocol, has
been presented in [MWF14].

In [CJ99] it was shown that any TA (possibly containing nested cycles, but again
without shared data variables) may be transformed into one that is flat (in the sense
that each location is part of at most one cycle), while preserving the reachability
relation between states. Their (non-local) transformation, while applicable to all TA,
is however not preserved in the context of parallel composition, and suffers from an
exponential blow-up in the number of locations in the flattened TA, cf. Lemma 3
of [CJ99]. Our (local) separation and flattening transformations, on the other hand,
are applicable (in the context of parallel composition) to the data-enriched setting
of ETA networks, and maintain the same number of locations, while reducing the
nesting depth and deleting those transitions that (re-)enter memoryless locations,
cf. Theorems 4.7 and 4.9.

A layered transformation for distributed algorithms with (predominantly syn-
chronous) message passing was presented in [SdR94]. Round-based communication
closedness was considered in [CSCBM09] for fault-tolerant distributed algorithms
with asynchronous message passing, with messages being considered only in the
rounds during which they were sent. Consensus algorithms in such a setting were
then brought under the scope of automatic verification, by means of “reduction
theorems”, cf. [CSCBM09].

Our example of real-time mutual exclusion is small but instructive; it served to
illustrate the interplay of the structural transformations of separation, layering, and
flattening.

4.7 Conclusion 69

For future work, it would be interesting to investigate whether the Gear Pro-
duction Stack case-study in [PM09] admits state space reduction by our flattening
transformation. Another possible direction could be the development of a struc-
tured extension to the Slicing Abstractions (SLAB) model-checker [DKFW10], which
would perform a pre-processing of the model according to our transformation rules,
thus simplifying the model’s subsequent verification.

In the next chapter, we present a layered transformation for randomized dis-
tributed algorithms (modelled as compositions of probabilistic automata), with ap-
plication to simplyfing a randomized distributed algorithm for mutual exclusion.

5

Layered Transformations for Networks

of Probabilistic Automata

5.1 Introduction

Probabilistic automata [SL95, Seg00] (PA) constitute an operational framework
for the modelling and analysis of discrete systems that exhibit both nondetermin-
istic and randomized behaviour, such as randomized distributed algorithms. An
I/O-variant of PA (PIOA) has been used to successfully analyze intricate random-
ized distributed algorithms such as the Aspnes-Herlihy randomized consensus al-
gorithm [PSL00] and the IEEE Firewire protocol [SV99]. Extensions of PIOA have
been used for specifying and verifying security protocols [CCK+08]. In the context of
concurrency theory, PA are used as semantic models for stochastic process algebras,
and have been equipped with (bi)simulation notions [SL95].

Despite the presence of modular verification techniques for PA [Seg00], the cor-
rectness proofs of randomized distributed algorithms remain difficult and require
substantial human ingenuity. This chapter attempts to simplify their reasoning by
enriching probabilistic automata with the concept of layering. The main underlying
idea is that the computations of randomized distributed algorithms often exhibit a
sequential (i.e., layered) structure. The idea of using such sequential structure to
simplify the verification of distributed algorithms was originally proposed in eight-
ies by Elrad and Francez [EF82], and has been extended, formalized [SdR94], and
applied to intricate distributed algorithms such as the minimal spanning tree algo-
rithm [JZ92] about a decade later. Layered reasoning (though in a different way as
in this chapter) has been recently used to obtain tighter bounds for asynchronous
randomized consensus [AC08]; earlier work on applying layering to bound analysis
appeared in [MR02]. We study in this chapter layered reasoning for randomized dis-
tributed algorithms, with PA (enriched with shared data variables) as the underlying
operational model.

For simplifying the formal reasoning of randomized distributed algorithms, we
introduce layered composition P•Q of PA P and Q; the PA P•Q behaves like P||Q,
the parallel composition of P and Q, except that for all actions a of P and b of Q
that depend on each other (e.g., as both actions affect the same shared variable), a
is executed before b. Layered composition is thus a kind of asymmetric parallel com-
position. We obtain a probabilistic version of the communication closed layer (CCL)
law that allows us to identify (P1 •P2)||(Q1 •Q2) and (P1||Q1) • (P2||Q2), provided

5.2 Probabilistic Automata 71

P1,Q2 and P2,Q1 respect pair-wise certain independence or precedence conditions.
This CCL law enables us to transform a randomized distributed algorithm into an
equivalent layered one so as to permit easier verification. This verification is techni-
cally enabled using a partial-order (po) equivalence on probabilistic automata;

The CCL law together with the po-equivalence of • and ; allows the transfor-
mation of (P1;P2)||(Q1;Q2) –via intermediate representations (P1 • P2)||(Q1 • Q2)
and (P1||Q1) • (P2||Q2)– finally to (P1‖P2); (Q1‖Q2) under the aforementioned in-
dependence or precedence conditions. This should yield a syntactic (partial order)
state-space reduction that may be applied prior to automated model checking of ran-
domized distributed algorithms. However, Luis Maria Ferrer Fioriti of Saarland Uni-
versity observed that the unrestricted (adversarial) resolution of non-determinism
could exploit the outcome of a preceding probabilistic choice, leading to a violation of
the po-equivalence between (P1;P2)||(Q1;Q2) and (P1‖P2); (Q1‖Q2) in the general
case. We conjecture that an oblivious adversarial resolution of the non-determinism
(that is not allowed to exploit the outcomes of prior probabilistic choices) might
resolve this problem. Moreover, the necessary termination conditions on P1 and Q1

for obtaining po-equivalence remain open.
Notwithstanding these technical issues, we illustrate the feasibility of proba-

bilistic layering on the randomized mutual exclusion algorithm of Kushilevitz and
Rabin [KR92], which, as shown in [MGCM08], has oblivious adversarial resolution
built into its specification. This algorithm improves an earlier version proposed by
Rabin [Rab82], whose correctness proof was demonstrated as being flawed in [Sai92],
due to the comparison of two probabilities that were not defined within the same
probability space [Seg00].

This chapter is a revised version of [5] with the following structure: Section 5.2
recalls the PA framework and the notion of trace distributions. It also defines se-
quential (denoted by ;) and parallel composition (denoted by ||). Section 5.3 defines
the notion of layered composition (denoted by •), precedence relations for PA, and
formulates the probabilistic CCL laws. Section 5.4 defines po-equivalence ≡∗

po when
• is replaced by ; within the CCL laws. Section 5.5 shows the applicability of our
approach to the randomized mutual exclusion algorithm of [KR92]. Section 5.6 con-
cludes the chapter with additional perspectives on our results in relation to the
analysis in [MGCM08].

5.2 Probabilistic Automata

In this section, we introduce Probabilistic Automata (PA) [Seg00, Sto02] enriched
with shared data variables as operational models for randomized distributed algo-
rithms. Such PA exhibit both probabilistic and non-deterministic behaviour. The
non-deterministic behaviours of PA are resolved using adversaries. Trace distribu-
tions characterize the probability spaces associated to such adversaries. The be-
haviours of PA are compared in terms of their trace distributions. To enable modular
reasoning of PA, we also introduce the concepts of sequential and parallel composi-
tion. The non-deterministic selection of a component during distributed execution
is modelled by a corresponding operator on PA.

72 5 Layered Transformations for Networks of Probabilistic Automata

Actions, data variables, and probability distributions.

Let Σ be a finite alphabet of (communication) channels. A typical element of Σ is
denoted α, β, · · · . There are two actions for each channel α ∈ Σ: α? denotes an input
on α, while α! denotes the corresponding output on α, where α?, α! /∈ Σ. We denote
by τ an action resulting from synchronization, with τ 6∈ Σ. By Σ?! = {α? | α ∈
Σ} ∪ {α! | α ∈ Σ} ∪ {τ}, we denote the set of all actions over the alphabet Σ. A
typical element of Σ?! is denoted a, b, · · · . In the context of parallel composition,
input and output are complementary actions that can synchronize yielding τ . For
an action a ∈ Σ?! \ {τ}, its complementary action is denoted by a, i.e., α? = α! and
vice-versa. We stipulate that τ -actions may result only from the synchronization of
complementary input and output actions.

Let V be a finite set of data variables (ranged over by v) that take values in some
finite range D. By Ψ(V) we denote the set of data updates with typical element ψ.
The left-hand side of an update is a variable in V whereas its right-hand side is an
expression involving the variables of V and the usual arithmetic operators +,−, · · · .
For each ψ ∈ Ψ(V) each variable occurs at most once on the left-hand side of an
update. The set Φ(V) of data constraints over V with typical element φ is the set
of Boolean constraints over variables in V involving the usual arithmetic (+,−, · · ·)
and relational (<,≤, >,≥) operators. A data valuation assigns a value in D to each
data variable in V . If |V | = m, a data valuation is identified with a point in Dm,
denoted typically by u,v etc. Applying an update ψ ∈ Ψ(V) on data valuation u
yields the data valuation ψ(u). For valuation u and boolean constraint φ, let u |= φ
denote that the valuation u satisfies the data constraint φ.

Let S be a countable set. The function µ : S → [0, 1] is a distribution on S if∑
s∈S µ(s) = 1. Let Dist(S) denote the set of distributions on S and supp(µ) =

{s ∈ S | µ(s) > 0} be the support of µ.

Definition 5.1 (Probabilistic automata (PA)). PA are tuples P = 〈L, l0, lf , V,Σ, prob〉,
where:

• L is a finite, non-empty set of locations, ranged over by l, l′, · · · .
• l0 ∈ L is the start location.
• lf ∈ L is the final location with l0 6= lf .
• V is a finite set of data variables taking on values in a finite range D.
• Σ is a finite alphabet of channels.
• prob ⊆ L \ {lf} × Σ?! × Φ(V) × Dist(Ψ(V) × L) is a probabilistic transition

relation.

In the above definition, prob relates a location l 6= lf , action a and guard φ ∈ Φ(V)
to a distribution over Ψ(V)×L, i.e., an update and a target location. The intuitive
operational meaning of (l, a, φ, µ) ∈ prob is as follows. Given the current location l,
action a, and a data valuation in l satisfying the guard φ, with probability µ(ψ, l′) a
transition to location l′ is made while updating the data variables according to the
update ψ. In case (l, a, φ, µ) ∈ prob and (l, a, φ, ν) ∈ prob, on action a and satisfaction
of guard φ a non-deterministic choice between distributions µ and ν is made. Tuples
(l, a, φ, µ) ∈ prob are called edges of the PA. Let edges(l, a, φ) denote the set of
edges {(l, a, φ, µ) ∈ prob}. Note that by the above definition, edges(lf , a, φ) = ∅ for
all a ∈ Σ?! and all φ ∈ Φ(V).

5.2 Probabilistic Automata 73

Remark 5.1. According to the above definition, multiple distributions can be associ-
ated with a given location l, action a, and guard φ, as prob is a relation. This enables
a conceptually cleaner notion of non-deterministic choice between probabilistic au-
tomata, as will be defined later (cf. Definition 5.13).

The semantics of a PA is given in terms of a probabilistic transition system
(PTS). A PTS is basically a labelled transition system where the target of labelled
transitions are distributions over states, rather than just simply states. A state of a
PA with |V | = m is a pair (l,u) ∈ L ×Dm, denoted typically by s, consisting of a
location l and a data valuation u.

Definition 5.2 (Induced probabilistic transition system). The PA P =
〈L, l0, lf , V, Σ, prob〉 with
|V | = m induces the PTS [P] = 〈S, s0, Σ,∆〉, where
• S = L×Dm is the state space.
• s0 = (l0,v0), where v0 ∈ Dm denotes a designated initial data valuation.
• ∆ ⊆ S × Σ?! × Dist(S) is the transition relation defined by: ((l,u), a, ν) ∈

∆ iff (l, a, φ, µ) ∈ prob and u |= φ, with
ν((l′,v)) =

∑{‖µ(ψ, l′) | v = ψ(u) ‖}, where {‖ . . . ‖} denotes a multi-set.

The transition relation ∆ thus contains triples (s, a, ν) with s = (l,u) whenever
there is an edge (l, a, φ, µ) in the PA such that the valuation u satisfies the guard
φ. The probability to move to the state s′ = (l′,v) is the cumulative probability
µ(ψ, l′) where the valuation v is obtained from u by an update according to ψ. The
multi-set is needed as there may be several branches of the edge (l, a, φ, µ) that lead
with the same likelihood to the next state s′ = (l′,v). A transition (s, a, µ) ∈ ∆ is
denoted s a−→µ.

Remark 5.2. Note that the induced PTS considered in this chapter are all finite
state, owing to the range D of the data variables being finite. The notation [P]
in this chapter indicates the induced probabilistic transition system of the PA P,
and thus contrasts with a similar notation for wrapping in the previous chapter,
cf. Definition 4.10. Note however that wrapping does not apply here as the PA
framework is in the untimed setting.

Paths and traces.

The PA model thus incorporates both non-determinism and probabilistic choice,
and a possible behaviour reflected in the corresponding PTS results from the res-
olution of non-deterministic and probabilistic choices, described in terms of paths.
A path π of a PTS [P] = 〈S, s0, Σ,∆〉 is a (possibly infinite) sequence of the form
π = s0a1µ1s1a2µ2s2a3µ3s3 . . . where ∀n : sn

an+1−−−−→µn+1, and µn+1(sn+1) > 0. Let
last(π) denote the last state of π (if π is finite), π(n) the nth state of π, and |π| the
length (i.e., number of actions) of π. For a given PTS [P], let Path∗([P]) be the set
of all finite paths of [P], and Pathω([P]) the set of all (possibly infinite) paths of
[P]. Also, we denote by Pathn([P]) the set of paths [P] of length upto n. For a given
path π = s0a1µ1s1a2µ2s2a3µ3s3 . . ., the n

th transition is sn−1
an−−→µn, and its trace

is given by trace(π) = a1a2a3 . . ., obtained by omitting all states and distributions
from π.

74 5 Layered Transformations for Networks of Probabilistic Automata

Definition 5.3 (Adversary). For a given PTS [P] = 〈S, s0, Σ,∆〉, an adversary
A of [P] is a function A : Path∗([P]) 7→ (Σ?! × Dist(S)) ∪ {⊥} that maps every
finite path π of [P] to a pair (a, µ) or to ⊥, such that if A(π) = (a, µ) for some
a ∈ Σ?! and µ ∈ Dist(S), then (last(π), a, µ) ∈ ∆ and if there is no a ∈ Σ?! and
µ ∈ Dist(S) such that (last(π), a, µ) ∈ ∆ then A(π) = ⊥, where ⊥ denotes a special
action for termination.

Thus, an adversary resolves all non-deterministic choices of the PTS [P], so that
under a given adversary A of [P], the behaviour of P is purely probabilistic. In
this chapter, we restrict the class of adversaries to be admissible and memoryless
[Seg95]. An adversary A of a PTS [P] is said to be memoryless if for any two finite
paths π and π′ of [P], last(π) = last(π′)⇒ A(π) = A(π′). An admissible adversary
is one that schedules bismilar transitions for any two finite paths having identical
traces and ending in bisimilar states [Seg95]. We denote by Adv([P]) the set of all
memoryless admissible adversaries of the PTS [P].

A path π = s0a1µ1s1a2µ2s2 . . . ∈ Pathω([P]) under an adversary A is such that
A(prefn(π)) = (an+1, µn+1) and µn+1(sn+1) > 0 for all 0 ≤ n ≤ |π|. Here, prefn(π)
denotes the prefix of π of length n. We denote by Path∗

A([P]) (resp. Pathω
A([P])) the

set of all finite (resp. possibly infinite) paths of the PTS [P] under a given adversary
A. Similarly, Pathn

A([P]) denotes the set of paths upto length n of [P] under A. Note
that states having the final location lf of the PA P as their location component do
not admit further actions, so that ∀A ∈ Adv([P]), ∀π ∈ Path∗

A([P]) : last(π) =
(lf ,u) we have that A(π) = ⊥.

A path π is said to be maximal under a given adversary A if either π is an infinite
path in Pathω

A([P]), or if π is a finite path in Path∗
A([P]) and A(π) = ⊥. That is to

say, a maximal path under adversary A is a path that cannot be prolonged under A.
We denote by Pathmax

A ([P]) the set of all maximal paths in [P] under the adversary
A.

We now formulate a notion of equivalence on adversaries for comparing the
behaviours of PA that are defined over the same alphabet, the same state space,
and the same set of distributions. Such PA arise when considering the probabilistic
communication closed equivalences that will be detailed later.

Definition 5.4 (Equivalence ≡ on adversaries). Given PA P1 and P2 defined
over the same alphabet Σ, the same state space S, and the same set of distributions
Dist(S), with Ai ∈ Adv([Pi]). Then A1 ≡ A2 iff ∀πi ∈ Path∗

Ai
([Pi]) ∃π3−i ∈

Path∗
A3−i

([P3−i]) : |πi| = |π3−i| ∧ last(πi) = last(π3−i) ∧ A3−i(π3−i) = Ai(πi)
where i ∈ {1, 2}.

Thus, equivalent adversaries induce the same possible non-deterministic choices
for all same-length finite paths with identical last-states. The probability that a given
resolution of non-determinism —as specified by an adversary A of [P]— results in
a path π ∈ Path∗([P]) is given by a function QA : Path∗([P]) 7→ [0, 1]. It is defined
inductively as follows: QA(s0) = 1 and if A(π) = (a, µ) for some a ∈ Σ?! and µ ∈
Dist(S), then QA(πaµs) = QA(π) ·µ(s), and if A(π) = ⊥, then QA(π⊥) = QA(π).

This probability is embedded within a probability space associated to the given
adversary A. Note that it is necessary to reason about the (probabilistic) behaviour

5.2 Probabilistic Automata 75

of adversaries in terms of their respective probability spaces —the mere assignment
of probabilities to paths via distributions does not suffice. 1

Definition 5.5 (Probability space). A probability space 〈Ω,F ,P〉 consists of

• Ω, the sample space.
• F ⊆ 2Ω, a σ-field, i.e., F contains Ω, and is closed under countable union and

complementation.
• P : F 7→ [0, 1], a probability measure on F , such that P(Ω) = 1, and P(∪iXi) =∑

i P(Xi), where the Xi are pair-wise disjoint subsets of F .

This leads to the notion of a probability space associated to an adversary A, by
considering for each finite path π generated by A the corresponding cylinder cyl(π)
containing all maximal paths with π as prefix.

Definition 5.6 (Probability space associated to an adversary). The proba-
bility space associated to an adversary A of a PTS [P] is 〈ΩA,FA,PA〉, where

• ΩA = Pathmax
A ([P])

• FA is the smallest σ-field containing the cylinder sets { cyl(π) | π ∈ Path∗
A([P])},

where cyl(π) = {π′ ∈ ΩA | π prefix of π′}
• PA is the unique measure on FA such that PA(cyl(π)) = QA(π) for all π ∈

Path∗
A([P]).

Measure-theoretic arguments ensure that 〈ΩA,FA,PA〉 is indeed a probability
space. We are now positioned to characterize the semantics of a given PA P in
terms of the trace distribution for some adversary A of its PTS [P]. Such a trace
distribution is obtained from the probability space associated to paths under the
adversary A by omitting all states and distributions.

Definition 5.7 (Trace distribution). The trace distribution T = trdistA([P]) of
an adversary A of a PTS [P] = 〈S, s0, Σ,∆〉 is the probability space 〈ΩT ,FT ,PT 〉,
where

• ΩT = Σ∗
?! ∪Σω

?!.
• FT is the smallest σ-field containing {cyl(w) | w ∈ Σ∗

?!}, where cyl(w) = {w′ ∈
ΩT | w prefix of w′}.

• PT (X) = PA({π ∈ Pathmax
A ([P]) | trace(π) ∈ X}) for all X ∈ FT .

The sample space of trdistA([P]) are sets of finite and infinite action-sequences,
referred to as traces. Measurable elements are sets of traces obtained via a standard
cylinder construction. The measure of set X is the probability of the set of maxi-
mal paths of PTS [P] under adversary A yielding a trace in X. Measure-theoretic
arguments ensure the well-definedness of the above probability space. We denote
by trdist([P]) the set of the trace distributions of the PTS [P] under all possible
(memoryless and admissible) adversarial resolutions.

Thus: trdist([P]) = { trdistA([P]) | A ∈ Adv([P]) }.
1 In fact, the comparison of two probabilities that were not defined in the same
probability space resulted in an erroneous proof of correctness [Seg00] for the
earliest randomized algorithm for mutual exclusion [Rab82].

76 5 Layered Transformations for Networks of Probabilistic Automata

Definition 5.8 (Trace distribution equivalence). P1 ≡TD P2 iff trdist([P1]) =
trdist([P2]).

This trace distribution equivalence ≡TD enables the comparison of the behaviours
of PA via the following proposition that gives a sufficient condition relating ≡TD to
the adversaries of the PA being compared.

Proposition 5.1 (From ≡ on adversaries to ≡TD). Given PA P1 and P2 over
the same alphabet Σ, the same state space S, and the same set of distributions
Dist(S). If ∀Ai ∈ Adv([Pi]) ∃A3−i ∈ Adv([P3−i]) : Ai ≡ A3−i (where i ∈ {1, 2}),
then P1 ≡TD P2.

Proof. The PA P1 and P2 have the same alphabet Σ, the same state space S,
and the same set of distributions Dist(S), where each of Σ, S, and Dist(S) is
finite, and thus the induced PTS [P1] and [P2] are also finite (cf. Definition 5.1
and Remark 5.2). This finiteness rules out the existence of non-cyclic infinite paths
in both Pathmax

A1
([P1]) and Pathmax

A2
([P2]), which might otherwise arise owing to

König’s Lemma [Koe36] for infinite graphs. Thus, reasoning about maximal paths
in Pathmax

A1
([P1]) and Path

max
A2

([P2]) reduces to reasoning about their finite prefixes
of arbitrary length in Path∗

A1
([P1]) and Path∗

A2
([P2]), owing to all infinite paths

in Pathmax
A1

([P1]) and Pathmax
A2

([P2]) being necessarily cyclic. In particular, two
equivalent adversaries A1 and A2 –with A1 ∈ Adv([P1]) and A2 ∈ Adv([P2])–
will induce the same set of maximal paths, i.e., Pathmax

A1
([P1]) = Pathmax

A2
([P2])

whenever A1 ≡ A2. Now, the trace distribution of a PTS for a given adversary is
uniquely specified by the channel alphabet and the set of maximal paths under that
adversary (Definition 5.7). Equivalent adversaries will therefore result in equal trace
distributions, i.e., A1 ≡ A2 ⇒ trdistA1([P1]) = trdistA2([P2]). Further, we have
that ∀Ai ∈ Adv([Pi]) ∃A3−i ∈ Adv([P3−i]) : Ai ≡ A3−i (where i ∈ {1, 2}), thus
entailing trdist([P1]) = trdist([P2]). By Definition 5.8, this means P1 ≡TD P2. ⊓⊔

Composing PA.

We have thus far considered the semantics of PA that operate in isolation. In prac-
tice, however, PA need to be able to communicate with each other in order to
effectively model the inter-component interactions within a randomized distributed
system. We now define sequential, parallel, and choice composition of PA (denoted
;, ‖, and +, respectively) for assembling PA into a composite system.

Definition 5.9 (Sequential composition). Given PA Pi = 〈Li, l0i, lf i, Vi, Σi, probi〉,
where i ∈ {1, 2} with L1 ∩ L2 = ∅. Their sequential composition, denoted P1;P2,
is the PA 〈L, l0, lf , V1 ∪ V2, Σ1 ∪ Σ2, prob〉, where L = (L1 \ {lf 1}) ∪ L2 with l0 =
l01, lf = lf 2 and prob = prob′1 ∪ prob2.

Here prob′1 = prob1[l02 ← lf 1] is defined by (l, a, φ, µ) ∈ prob1 iff (l, a, φ, ν) ∈ prob′1
with

ν(ψ, l′) = µ(ψ, l′) if l′ 6= lf 1, and
ν(ψ, l02) = µ(ψ, lf 1) otherwise.

The PA P1;P2 behaves first like P1 and subsequently like P2. To establish this, the
final location lf 1 of P1 is amalgamated with the initial location l02 of P2. This is

5.2 Probabilistic Automata 77

reflected in the construction of prob, where basically all edges to lf 1 are redirected
to l02. This construction models sequential composition, since the final location lf 1

of P1 has no outgoing edges, cf. Definition 5.1.
While sequential composition describes the evolution of one PA followed by

that of another, parallel composition ‖ captures the concurrent evolution of two
PA. We adopt the CCS-style composition [Mil89], i.e., parallel PA synchronize on
common actions and act autonomously on all other actions —the latter is modelled
by interleaving. In order to avoid any read-write and write-write conflicts w.r.t.
the shared variables in the parallel PA, we require that edges corresponding to
synchronizing actions are non-interfering. This notion is defined as follows. Consider
edge e = (l, a, φ, µ). Let the write-set of e, denoted wr(e), be the set of variables
occurring on the left-hand side of an update ψ with µ(ψ, l′) > 0 for some l′. The
read-set of edge e, denoted rd(e), consists of all data variables that appear in the
guard φ or on the right-hand side of an update ψ with µ(ψ, l′) > 0 for some l′.

Definition 5.10 (Non-interfering edges). Let E1, E2 be sets of edges with e1 ∈
E1 and e2 ∈ E2. The non-interference relation 6⌢⊆ E1 × E2 is defined by:

e1 6⌢ e2 iff rd(e1) ∩ wr(e2) = wr(e1) ∩ rd(e2) = wr(e1) ∩ wr(e2) = ∅.

Thus, two edges are non-interfering whenever it is excluded that some variable that
may change in one edge is read (or may change) in the other edge. The relation 6⌢
is then canonically lifted to sets of edges: E1 6⌢ E2 iff for all e1 ∈ E1 and e2 ∈ E2

we have e1 6⌢ e2. In the following, let edges(a) = {(l, a, φ, µ) ∈ prob | ∃l ∈ L}
denote the set of a-labelled edges emanating from some location l ∈ L. Two PA are
now called non-interfering if their synchronized edges are non-interfering with each
other.

Definition 5.11 (Non-interfering PA). PA P1 and P2 over alphabet Σ1 and Σ2

respectively, are non-interfering, denoted P1 6⌢sync P2, if

∀a : a ∈ Σi?! ∧ a ∈ Σ3−i?!, it holds that edgesi(a) 6⌢ edges3−i(a),

where edgesi(a) is the set of a-edges in PA Pi, for i ∈ {1, 2}.

Remark 5.3. The above notion of non-interference is only w.r.t synchronizing actions
on common channels. Note that this does not preclude shared-variable dependencies
between actions on disjoint channels.

We now define parallel composition for such non-interfering PA.

Definition 5.12 (Parallel composition). Let PA P1 and P2 with Pi = 〈Li, l0i,
lf i, Vi, Σi, probi〉 for i ∈ {1, 2} with P1 6⌢sync P2 and L1 ∩ L2 = ∅. The parallel
composition of P1 and P2, denoted P1‖P2, is the PA 〈L, l0, lf , V1∪V2, Σ1∪Σ2, prob〉,
where

• L = L1 × L2 with l0 = (l01, l02) and lf = (lf 1, lf 2).
• ((l1, l2), a, φ, µ) ∈ prob iff (li, ai, φi, µi) ∈ probi, i ∈ {1, 2} and either:

1. Synchronization
ai ∈ Σi?! ∧ ai ∈ Σ3−i?!, a = τ , φ = φ1 ∧ φ2, and
µ(ψ, (l′1, l

′
2)) = µ1(ψ⌈V1 , l

′
1) · µ2(ψ⌈V2 , l

′
2), or

78 5 Layered Transformations for Networks of Probabilistic Automata

2. Interleaving
ai ∈ Σi?!, a = ai, φ = φi, and

µ(ψ, (l′1, l
′
2)) =

{
µi(ψ⌈Vi , l

′
i) if ψ⌈V3−i= idV3−i ∧ l′3−i = l3−i,

0 otherwise

where ψ⌈Vi restricts ψ to the domain Vi, while idVi denotes the identity valuation
over Vi, for i ∈ {1, 2}.

The parallel composition of P1 and P2 is thus the product of these PA, where the
probability of synchronizing on a common channel is the product of the individual
probabilities of performing the corresponding input/output actions in P1 and P2.
Note that (as in CCS) we always allow each component to perform autonomous
actions, where the other component idles with unit probability.

During the execution of randomized distributed algorithms, one often encounters
non-deterministic selection between various components that are to be subsequently
executed. Such non-deterministic selection is modelled by the operator + on PA.

Definition 5.13 (Non-deterministic choice). Let PA Pi = 〈Li, l0i, lf i, Vi, Σi, probi〉,
for i ∈ {1, 2} with (L1 \ {l01, lf 1}) ∩ (L2 \ {l02, lf 2}) = ∅, l01 = l02 = l0 and
lf 1 = lf 2 = lf . The non-deterministic choice of P1 and P2, denoted P1 + P2, is the
PA 〈L1 ∪ L2, l0, lf , V1 ∪ V2, Σ1 ∪Σ2, prob1 ∪ prob2〉.

Note that in the above definition, we require the initial and final locations of the
component PA to be identical, while imposing disjointness of all other locations.

The compositional constructs ‖ and + are both symmetric, and do not impose
the precedence of one component over the other based on the dependencies between
the individual PA.

In the next section, we will examine an asymmetric compositional operator and
some relations that exploit such dependencies.

5.3 Action Independence, Precedence, Layering

A randomized distributed algorithm often consists of (sequential) phases that exe-
cute in parallel on different components, wherein a transition within a given phase
can execute only after all dependent transitions in each preceding phase have been ex-
ecuted. In this section, we introduce the notion of action independence in PA and its
corresponding PTS along the lines of action independence in Markov Decision Pro-
cesses (MDPs) proposed in [BGC04, DN04]. This notion forms the basis for a layered
composition operator, denoted •, on PA that is intermediate between parallel and se-
quential composition. The • -operator is then used to formulate the communication-
closed layer (CCL) laws in a probabilistic setting. For a PTS [P] = 〈S, s0, Σ,∆〉, let
act(s) = {a ∈ Σ?! | ∃µ : (s, a, µ) ∈ ∆} denote the set of enabled actions in state s.

Definition 5.14 (Action independence). Let [P] = 〈S, s0, Σ,∆〉 be a PTS. The
actions a, b ∈ Σ?! are independent in [P], denoted a ≁ b, iff for all states s ∈ S with
a, b ∈ act(s) it holds that:

1. For any s′ ∈ S : if s a−→µ and µ(s′) > 0, then b ∈ act(s′).

5.3 Action Independence, Precedence, Layering 79

2. For any s′ ∈ S : if s b−→ ν and ν(s′) > 0, then a ∈ act(s′).
3. For any s′′ ∈ S :

∑
{µ(s′) · ν(s′′) | s a−→µ ∧ s′ b−→ ν} =

∑
{µ(s′) · ν(s′′) | s b−→µ ∧ s′ a−→ ν}.

Stated in words, actions a and b are independent whenever for every state s in
which both actions are enabled, (1.) the occurrence of a does not disable b, (2.)
and vice versa. Moreover, (3.) the total probability of reaching s′′ from s by either
performing a followed by b, or by performing b followed by a, coincides. Two distinct
actions a and b are dependent, denoted a ∼ b, iff they are not independent. The
relation ≁ is lifted to sets of actions in the standard manner. Notice that action
independence is a semantic notion as it is defined on the underlying PTS [P] of the
PA P. The following proposition shows that the non-interference relation 6⌢, which
can be determined by a simple syntactic analysis of P, is a sufficient condition for
action independence. Let a 6⌢ b whenever edges(a) 6⌢ edges(b).

Proposition 5.2 (Sufficient condition for action independence). Let PA P1

and P2 be over the alphabets Σ1 and Σ2, respectively. Then for ai ∈ Σi?!, i ∈ {i, 2},
a1 6⌢ a2 implies a1 ≁ a2 in [P1‖P2].

We may now define the layered composition, denoted •, of two PA. The operational
interpretation of P1 • P2 is that it behaves like the parallel composition of P1 and
P2 except that an action a in P2 can only occur if all the actions in P1 on which
a depends (in the sense of ∼) have already occurred. Stated differently, dependent
actions in P1 and P2 are treated as in the sequential composition P1;P2 whereas
independent actions are handled as in interleaving. For location l in PA P, let l ∗−→ l′

denote that location l′ is syntactically reachable from l through an arbitrary finite
sequence of edges. Let act(l) = {a ∈ Σ?! | (l, a, φ, µ) is an edge in P} denote the
set of enabled actions in location l.

Definition 5.15 (Layered composition). Given two PA Pi = 〈Li, l0i, lf i, Vi, Σi, probi〉,
where i ∈ {1, 2}, with L1 ∩ L2 = ∅ and P1 6⌢sync P2. The layered composition of
P1 and P2, denoted P1 • P2 is the PA 〈L, l0, lf , V1 ∪ V2, Σ1 ∪Σ2, prob〉, where
• L = L1 × L2 with l0 = (l01, l02) and lf = (lf 1, lf 2).
• ((l1, l2), a, φ, µ) ∈ prob iff (li, ai, φi, µi) ∈ probi, i ∈ {1, 2} and either:

1. Synchronization
ai ∈ Σi?! ∧ ai ∈ Σ3−i?!, a = τ , φ = φ1∧φ2, and µ(ψ, (l

′
1, l

′
2)) = µ1(ψ⌈V1 , l

′
1)·

µ2(ψ⌈V2 , l
′
2), or

2. Interleaving P1

a = a1 ∈ Σ1?!, φ = φ1, and µ(ψ, (l
′
1, l

′
2)) =

{
µ1(ψ⌈V1 , l

′
1) if ψ⌈V2= idV2 ∧ l′2 = l2,

0 otherwise
,

or
3. Interleaving P2

a = a2 ∈ Σ2?!, φ = φ2, and

µ(ψ, (l′1, l
′
2)) =

µ2(ψ⌈V2 , l
′
2) if ψ⌈V1= idV1 ∧ l′1 = l1 ∧

∀l∗1 : l1
∗→ l∗1 : act(l∗1) ≁ a in [P1‖P2],

0 otherwise.

80 5 Layered Transformations for Networks of Probabilistic Automata

In the above definition, the first two clauses are the same as for synchronization
and interleaving in parallel composition, whereas the third clause restricts the au-
tonomous execution of actions by P2 to actions that are ensured to be independent
of those in P1. PA P1 and P2 are independent, denoted P1 ≁ P2, iff for all a1 ∈ Σ1?!

and for all a2 ∈ Σ2?! it holds that a1 ≁ a2 in the PTS [P1‖P2]. Otherwise, P1 and
P2 are dependent, denoted P1 ∼ P2. In the presence of a shared variable dependence
between P1 and P2, a related notion is that of precedence for PA, defined as follows:

Definition 5.16 (Precedence ≺). For PA P1 and P2, P1 precedes P2 in the
parallel context of PA C1 and C2, denoted P1 ≺C1,C2 P2 if (P1‖P2‖C1‖C2) ≡TD

(P1;P2)‖(C1‖C2).

The relation ≺ is transitive and enforces a precedence of P1 over P2 in the parallel
context of C1 and C2 and by requiring that P1 and P2 do not synchronize on common
channels, and that trdist([(P2;P1)‖(C1‖C2)]) = ∅, which is ensured at the semantic
level by appropriate guards querying the shared data variables. This is illustrated
in the analysis of the randomized mutual exclusion algorithm in in the next section.
The following proposition conjectures the behaviour of the operator + w.r.t. the
independence ≁ and precedence ≺ relations for PA.

Proposition 5.3 (Relating + with ≁ and ≺). For PA P1, P2, C1, and C2, with
with P1 = R1 + U1 and P2 = R2 + U2,
• R1 ≁ R2 ∧ R1 ≁ U2 ∧ U1 ≁ R2 ∧ U1 ≁ U2 iff P1 ≁ P2

• R1 ≺C1,C2 R2 ∧ R1 ≺C1,C2 U2 ∧ U1 ≺C1,C1 R2 ∧ U1 ≺C1,C2 U2 iff
P1 ≺C1,C2 P2.

We then use layered composition and appropriate independence and precedence
side-conditions for formulating the following communication closed layer (CCL)
equivalences for PA.

Theorem 5.1 (CCL laws for PA). For PA P1, P2, Q1, and Q2, with (P1 ≁ Q2

or P1 ≺Q1,P2 Q2) and (Q1 ≁ P2 or Q1 ≺P1,Q2 P2), the following communication
closed layer (CCL) equivalences hold:

1. P1 • Q2 ≡TD P1‖Q2 (IND)
2. (P1 • P2)‖Q2 ≡TD P1 • (P2‖Q2) (CCL-L)
3. (P1 • P2)‖Q1 ≡TD (P1‖Q1) • P2 (CCL-R)
4. (P1 • P2)‖(Q1 • Q2) ≡TD (P1‖Q1) • (P2‖Q2) (CCL)

Proof. We attempt a proof of the law CCL-L. Given PA P1,P2,Q2, with P1 ≁ Q2 or
P1 ≺ Q2, we aim to show R ≡TD U , where R = (P1•P2)‖Q2 and U = P1•(P2‖Q2).
Note that R and U are both defined over the same channel alphabet Σ, state space
S, and set of distributions Dist(S), each of which is finite. It therefore suffices by
Proposition 5.1 to show that ∀A ∈ Adv([R]) ∃A′ ∈ Adv([U]) : A ≡ A′, and vice
versa. We show such adversarial equivalence by induction on path lengths n for finite
paths in Path∗

A([R]) and Path∗
A′([U]). The existence of an equivalent adversary A

in Adv([R]) for each adversary A′ in Adv([U]) is not hard to see intuitively, as
the parallel composition operator ‖ dominates in R and the layered composition
operator • in U . The dominance of • induces fewer interleavings in [U] on the basis
of the respective dependencies or precedences.

5.3 Action Independence, Precedence, Layering 81

We now show: ∀A ∈ Adv([R]) ∃A′ ∈ Adv([U]) : A ≡ A′. By Definition 5.4,
this amounts to showing: ∀A ∈ Adv([R]) ∀π ∈ Path∗

A([R]) ∃A′ ∈ Adv([U]) ∃π′ ∈
Path∗

A′([U]): |π| = |π′| ∧ last(π) = last(π′) ∧ A′(π′) = A(π).
For an adversary A ∈ Adv([R]) we proceed by induction on the length n of a

path π generated by A.
Induction Basis. For the case n = 0, we have π = s0, where s0 = ((l0P1, l0P2, l0Q2),v0)
2 is the initial state of both R and U . Thus we take π′ = π = s0 and choose A′ = A,
as R and U have the same alphabet Σ, the same state-space S, and the same set of
distributions Dist(S).
Induction Step. Consider a path πn+1 ∈ Pathn+1

A ([R]) (of length n + 1) with
prefn(πn+1) = πn such that last(πn) = sn = ((lP1, lP2, lQ2),u) and A(πn) =
(an, µn) for an ∈ Σ?! and µn ∈ Dist(S). This choice (an, µn) could have been per-
formed in R by either (a1) P1, (a2) P2, (a3) Q2 individually, or as a synchronization
involving either (b1) P2 and Q2, (b2) P1 and Q2, or (b3) P1 and P2.

The cases (a1) and (a2) are relatively straightforward. We now consider case (a3).
This means that there exists an edge e = (lQ2, an, φ, µn) in Q2 with µn(ψ, l

′
Q2) > 0

for some l′Q2 ∈ LQ2 and u |= φ, leading to a state sn+1 = ((lP1, lP2, l
′
Q2),u

′) where
u′ = ψ(u). From the induction hypothesis, there exists A′ ∈ Adv([U]) resulting in a
path π′

n ∈ Pathn
A′([U]) with last(π′

n) = sn and A′(πn) = (an, µn). As either P1 ≁

Q2 or P1 ≺Q1,P2 Q2, this necessarily means the existence of the same edge e in U
leading to the same state sn+1. We have thus shown that last(πn+1) = last(π′

n+1) =
sn+1 where π′

n+1 is a path in Pathn+1
A′ ([U]) obtained by continuing from π′

n along
the adversarial choice (an, µn) of A′. Now let A(πn+1) = (an+1, µn+1). Then the
possibilities for the choice (an+1, µn+1) are again as in (a1)–(a3) and (b1)–(b3). Thus
for the case (a3) (and also straightforwardly for (a1) and (a2)), using again the fact
that either P1 ≁ Q2 or P1 ≺Q1,P2 Q2, we see that (last(π′

n+1), an+1, µn+1) ∈ ∆U ,
and thus take A′(π′

n+1) = (an+1, µn+1).
On the other hand, when sn = ((lfP1, lfP2, lfQ2),u), we have A(πn) = A′(π′

n) =
⊥.

In (b1) there are edges with complementary actions enabled in P2 and Q2 indi-
vidually that can synchronize to an edge labeled with τ in the context of P2‖Q2. The
part of the τ -edge stemming from P2 was possible in P1 • P2, so it is possible also
in U = P1 • (P2‖Q2). When P1 ≁ Q2 or P1 ≺ Q2, the part of the τ -edge stemming
from Q2 is also enabled in U , and when executed in U yields the same state as when
executed in R = (P1 • P2)‖Q2, with the same possible further adversarial choices.

The case (b2) reduces to (a1) and (a3), and the case (b3) reduces to (a1) and
(a2). ⊓⊔

Remark 5.4. Note that each of the equivalences of Theorem 5.1 in fact relates iso-
morphic PA, as expressed by the equivalence ≡ on adversaries at each transition
step.

2 l0P1 is the initial location of P1, etc. We identify nested pairs ((x, y), z) and
(x, (y, z)) of locations with tuples (x, y, z).

82 5 Layered Transformations for Networks of Probabilistic Automata

5.4 Partial Order Equivalence

We introduce in this section partial order equivalence (≡∗
po) for PA. As we are in-

terested in comparing layered and sequential compositions of PA w.r.t ≡∗
po, we first

need to eliminate paths having τ -edges in the layered composition that have resulted
from the synchronization of complementary actions.

For PA P1 and P1, let P = P1 • P2. Let Path
∗
\{τ}([P]) denote the set of finite

paths of P with no τ -labelled transitions, i.e., Path∗
\{τ}([P]) = {π ∈ Path∗([P]) |

π = s0a1µ1s1a2µ2s3 · · · ∧ ∀i : ai 6= τ}. Similarly, we denote by Path∗
A\{τ}([P])

the set of all finite paths without τ -edges under some adversary A ∈ Adv([P]).
We then have the following proposition that relates the (probabilistic) behaviour of
paths of P with those that do not contain τ -labelled edges.

Proposition 5.4 (Ignoring paths with τ-edges). For PA P1 and P1, let P =
P1 • P2. Then we have ∀A ∈ Adv([P]) ∀π ∈ Path∗

A([P]) : ∃Ai ∈ Adv([P]) ∃πi ∈
Path∗

Ai\{τ}([P]) : PA(cyl(π)) = PAi(cyl(πi)), where i ∈ {1, 2}.

Proof. Let π ∈ Path∗
A([P]) be a finite path (under some adversary A of the layered

composition P) containing a τ -labelled edge. Then π is of the form π = π′τµπ′′,
where π′ and π′′ are finite path-fragments. Then from Definition 5.15 and from
our stipulation that τ -edges may only result from synchronization along comple-
mentary actions, there necessarily exist adversaries Ai and corresponding finite
paths πi ∈ Path∗

Ai\{τ}([P]) such that π1 = π′aµ′s1aµ
′′π′′ and π2 = π′aµ′′s2aµ

′π′′,

where a ∈ Σi?!, a ∈ Σ3−i?! (i ∈ {1, 2}). Owing to the layered composition • ad-
mitting a CCS-style interleaving on all actions, and owing to the non-interference
condition imposed on complementary actions (cf. Definition 5.15), we have that
µ′(s1) ·µ′′(π′′(0)) = µ′′(s2) ·µ′(π′′(0)) = µ(π′′(0)), where π′′(0) denotes the starting
state of the path-fragment π′′. As in the proof of Proposition 5.1, reasoning about
the path probabilities along π, π1 and π2 may then be extended to reasoning about
their possibly infinite continuations via the cylinder constructions, thus yielding
PA(cyl(π)) = PA1(cyl(π1)) = PA2(cyl(π2)). ⊓⊔

Note that π1 and π2 appearing in (the proof of) Proposition 5.4 differ only in the
permutative ordering of the independent transitions corresponding to a and a, and
they both preserve the validity of properties that are insensitive to superfluous
intermediate states (such as s1 and s2). For such (stutter invariant, or next-free)
properties, it therefore suffices to consider paths in Path∗

\{τ}([P]). For relating paths
in Path∗

\{τ}([P]) with those of sequential composition, we introduce the partial order
equivalence ≡∗

po on (finite paths of) PA.

Definition 5.17 (po-equivalence ≡∗
po on finite paths). For PA P1 and P2, let

π1 ∈ Path∗
\{τ}([P1]) and π2 ∈ Path∗

\{τ}([P2]). Then π1 ≡po π2 iff there exist finite
path fragments π, π′ such that π1 = πaµs1bµ

′π′ and π2 = πbµ′s2aµπ
′, where a ≁ b.

The partial order equivalence ≡∗
po on finite paths without τ -labelled edges is then the

reflexive, transitive closure of ≡po.

Thus two paths related via ≡∗
po may be obtained from each other by repeated

permutation of adjacent independent actions, modulo some superfluous intermediate
states (such as s1 and s2 in the above definition). Note that by the independence a ≁

b, we have µ(s1) ·µ′(π′(0)) = µ′(s2) ·µ(π′(0)). We then introduce a notion of layered
normal form to relate via ≡∗

po the τ -eliminated paths of a layered composition.

5.4 Partial Order Equivalence 83

Definition 5.18 (Paths of • in LNF). π ∈ Path∗
\{τ}([P1 • P2]) is said to be in

layered normal form (LNF) iff π = s0a1µ1s1.... such that ∃n : loc(sn) = lf 1 and
∀i ≤ n : ai ∈ Σ1?! ∧ ∀j > n : aj ∈ Σ2?!.

Here, loc(sn) denotes the location-component of the state sn.
Thus, a path (in the PTS) of a layered composition P1 • P2 is in LNF if it

first consecutively executes actions of P1 leading to lf 1 and thereafter consecutively
executes actions of P2. We denote by Path∗

LNF ([P1 • P2]) the set of all paths of
[P1 • P2] that are in LNF. The definition of the layered composition • permits the
execution of P2 actions only after the execution of all dependent P1 actions, thus
leading to the following proposition.

Proposition 5.5 (Relating paths in LNF via ≡∗
po). For PA P1 and P2, where

[P1] is guaranteed to terminate in lf 1 with probability 1, the following holds: ∀π ∈
Path∗

\{τ}([P1 • P2]) ∃π′ ∈ Path∗
LNF ([P1 • P2]) : π ≡∗

po π
′.

Proof. This proposition follows from the definition of • and the construction of
paths in LNF, given that an action of P2 is allowed to execute in P1 • P2 only after
all dependent actions of P1 have been executed, and any action of P2 in a path
of P1 • P2 is thus necessarily independent of all P1 actions it precedes, and may
therefore be permuted repeatedly to yield a path of P1 • P2 in LNF. ⊓⊔

We now lift the notion of ≡∗
po from paths to PA.

Definition 5.19 (≡∗
po for PA). For PA P1 and P2, we write P1 ≡∗

po P2 iff the
following holds for i ∈ {1, 2}: ∀Ai ∈ Adv([Pi]) ∀πi ∈ Path∗

Ai\{τ}([Pi]) ∃A3−i ∈
Adv([P3−i]) ∃π3−i ∈ Path∗

A3−i\{τ}
([P3−i]) : πi ≡∗

po π3−i

Remark 5.5. Proposition 5.4 ensures that it is sufficient for ≡∗
po to consider paths

in Path∗
Ai\{τ}([Pi]). As in Proposition 5.4, we have for the po-equivalent paths π1

and π2 above: PA1(cyl(π1)) = PA2(cyl(π2)).

A consequence of Definition 5.19 and Proposition 5.5 is that ≡∗
po should hold

between the compositions • and ; .

Theorem 5.2 (≡∗
po between • and ;). For PA P1 and P2 where [P1] is guaranteed

to terminate in lf 1 with probability 1, P1 • P2 ≡∗
po P1;P2.

Proof. Let π ∈ Path∗
LNF ([P1 • P2]). Then by Definition 5.18, there exists a path

π′ ∈ Path∗([P1;P2]) such that ∀n ≥ 0 : loc(π(n)) ≈ loc(π′(n)) ∧ val(π(n)) =
val(π′(n)) ∧ π(n)

an+1−−−−→µn+1 ⇒ π′(n)
an+1−−−−→µn+1 ∧ µn+1(π(n + 1)) =

µn+1(π
′(n+1)), where π(n) is the nth state of π, loc(π(n)) is the location component

of that state, val(π(n)) is the vector of data valuations in that state, and ≈ is a rela-
tion defined as follows on the location spaces L1×L2 of P1 •P2 and (L1∪L2)\{lf 1}
of P1;P2 : ∀l1 ∈ L1 with l1 6= lf 1 : (l1, l02) ≈ l1 and ∀l2 ∈ L2 : (lf 1, l2) ≈ l2. Every
path of P1 • P2 in LNF is therefore exactly mimicked by a path of P1;P2 (modulo
the relation ≈ on the location spaces of P1 •P2 and P1;P2), and vice-versa. We also
have from Proposition 5.5 that every finite (τ -eliminated) path of P1 • P2 is either
in LNF, or is po-equivalent to another path in LNF. ⊓⊔

84 5 Layered Transformations for Networks of Probabilistic Automata

As the PA related by Theorem 5.1 are isomorphic, with the equivalence ≡ on
adversaries being stronger than ≡∗

po, we then have the following corollary from
Theorems 5.1 and 5.2.

Corollary 5.1. Replacement of • by ; in the CCL laws yields po-equivalences, when
[P1] and [Q1] are guaranteed to terminate in their respective final locations with
probability 1.

The paper [5] had originally stated that 5.1 would result in the probabilistic
preservation of stutter invariant properties expressible in the Linear Temporal Logic
(LTL) without the next operator. However, Luis Maria Ferrer Fioriti of Saarland
University found this to be false when no restrictions were placed on the allowable
adversarial resolutions of non-determinism. Based on our analysis in the next section
(confirmed by experimental evaluation in [Sha15]) and the analysis in Section 8
of [MGCM08], we conjecture that Corollary 5.1 preserves probabilistic reachability
properties as in [Sha15] under memoryless, admissible, and oblivious resolutions of
non-determinism, when the PA are either acyclic,or where the (transition systems
of the) PA of the first layer, i.e., [P1] and [Q1] terminate in their respective final
locations with probability 1.

Methodology for layered separation.

We conclude this section with an outline of the intended methodology for layered
transformation, illustrated on a schematic example. Given PA P1,P2,Q1 such that
Q1 ≁ P2 or Q1 ≺P1 P2 we can reduce the state space of the PA system by applying
to it the equivalences ≡TD and ≡∗

po, as shown below.

(P1;P2)‖Q1

≡∗
po { Corollary 5.1 }

(P1 • P2)‖Q1

≡TD { CCL-R }
(P1‖Q1) • P2

≡∗
po { Corollary 5.1 }

(P1‖Q1);P2.

If each of P1,P2,Q1 has 10 locations then –from the definitions of the composi-
tional constructs ‖, •, and ;– we see that the original PA system has 190 locations
while the transformed system via layered separation (using ≡TD and ≡∗

po) has 109
locations. These reductions in the number of discrete locations to be explored be-
come more pronounced as the number of system components increases, as will be
illustrated next.

5.5 Case Study : Randomized Mutual
Exclusion

To demonstrate the benefit of the layered separation achieved by means of the
CCL laws and the associated po-equivalences, we consider the (revised) randomized

5.5 Case Study : Randomized Mutual Exclusion 85

mutual exclusion algorithm MUTEX for N ≥ 2 processes by Kushilevitz and Ra-
bin [KR92]. The authors in [KR92] describe their algorithm informally, partly in the
running text and partly by pieces of pseudo code. This makes it difficult to obtain
a complete picture of the algorithm. We present here (our view of) the essential
ingredients of the algorithm in terms of PA composed sequentially, nondeterminis-
tically and in parallel. Our presentation is influenced by the algebraic analysis in
the work of McIver, Gonzalia, Cohen, and Morgan [MGCM08] of parts of the algo-
rithm in terms of separation theorems expressed in a probabilistic Kleene Algebra.
We however analyze the algorithm of [KR92] in this section by means of layered
separation.

The algorithm proceeds in rounds. To avoid keeping a record of the un-
bounded round numbers, the algorithm uses a randomized round number chosen
by the process entering the critical section. During a round, every process Pi with
i ∈ {1, . . . , N} cycles through four phases: drawing or voting Vi, notification or
testing Ti, critical section Ci, and remainder Ri. In the voting phase, the processes
participate in a lottery where they use a geometric distribution to pick numbers in
the set {1, . . . , B}, where B = log2N+4. The value k is drawn with probability 1/2k

for k ≤ B − 1, and with probability 1/2k−1 for k = B. The process that has drawn
the highest number in the lottery will be notified as the winner in the subsequent
notification round and will next enter the critical section. It stays thereafter in its
remainder phase until it decides to participate in another voting phase.

The algorithm distinguishes between even and odd rounds, with different pseudo-
code for voting, notification, and critical section. Between an access to the critical
section in an even round (called even critical section) and the access to the critical
section in the subsequent odd round (called odd critical section) both an odd noti-
fication phase (for entering the odd critical section) and an even voting phase (for
the next even critical section) will occur, and vice versa, with the roles of even and
odd exchanged.

The processes P1, . . . ,PN share several variables: b even and b odd (maximal
lottery value in even and odd rounds, respectively), r even and r odd (random round
number bit in even and odd rounds, respectively), s (binary semaphore guarding
the critical section), p (parity bit serving as guards of even and odd phases), and
w (indicator that the winner of lottery is notified). Whereas b even, b odd range
over {0, . . . , B}, the variables s, p, w range over {0, 1}, and r even, r odd range
over {nil, 0, 1}. Additionally, each process Pi manipulates some local variables: b(i)
(lottery value drawn by Pi), d(i) (difference contributed by Pi to the maximum
lottery value), r(i) (round number), w(i) (indicator that Pi knows it has won the
lottery), and pc(i) (program counter). Here b(i) and d(i) range over {0, . . . , B}, r(i)
ranges over {nil, 0, 1}, w(i) over {0, 1}, and pc(i) over {nil, rem, it}.

In Fig. 5.1–5.4 we show for process Pi the PA representing the even phases
Vi, Ti, Ci (and explain how PA for the odd phases are obtained) as well as PA repre-
senting Ri and idling versions of voting and notification. In these PA, all edges are
labelled uniquely by corresponding actions, which we omit in the graphic represen-
tation. Synchronization between the processes P1, . . . ,PN does not take place via
these actions, but via guards checking the values of the shared variables.

The algorithm is modeled by the following parallel compositionMUTEX, where
each process Pi is a loop (represented by ∗) built up from sequences of nondeter-
ministic choices of the phases defined above:

86 5 Layered Transformations for Networks of Probabilistic Automata

MUTEX = (P1‖ . . . ‖PN) with Pi =

odd Vi + IVi + even Ci
;

odd Ti + IT i +Ri

;

even Vi + IVi + odd Ci
;

even Ti + IT i +Ri

∗

The algorithm starts with the following initial values: b even = b odd = 0, r even =
r odd = nil, s = 0, p = 1, w = 1, and for all i ∈ {1, . . . , N} we assume b(i) = 0,
d(i) = 0, r(i) = 0, pc(i) = nil. Furthermore, we stipulate w.l.o.g that w(1) = 1 and
w(i) = 0 for i ∈ {2, . . . , N}.

The nondeterministic choices in Pi are restricted by the following sequencing
constraints enforced via the local program counter pc(i): once idle voting IVi is
chosen, only idle notification IT i can follow due to the guard pc(i) = it; once the
critical section Ci is chosen, only the remainder Ri can follow due to the guard
pc(i) = rem. Once voting Vi is chosen and it ends with a contribution d(i) > 0, only
notification Ti can follow. If Vi ends with d(i) = 0, only idle notification IT i can
follow.

Transformation into a layered representation.

We now show that MUTEX can be transformed into a layered representation.
Since the CCL laws stated in the previous section do not involve the ∗-operator
on PA, we argue by considering finite, initial unfoldings of the ∗ and establish the
layering for these unfoldings. Inferring a layered representation of the loops from a
layered representation of the unfoldings is correct if the processes Pi of MUTEX
are prevented from pursuing infinite executions of idle voting and idle notification
by a fairness assumption.

In Table 5.1 we display the unfolded MUTEX up to round 4. To refer uniquely
to different instances of the phases of each process Pi in the unfolding we attach
a round number r ∈ N to them and thus write Vr

i , T r
i , Cri , Rr

i , IVr
i , and IT r

i .
The instances are defined as follows: Vr

i = even Vi if r is even and Vr
i = odd Vi

if r is odd, and analogously for T r
i and Cri . Furthermore, for all r ∈ N, Rr

i = Ri,
IVr

i = IVi, and IT r
i = IT i. The initial unfolding up to round 4 is presented by the

parallel composition in Table 1, with one sequential thread for each of the processes
P1, . . . ,PN . The nondeterminism represented by + is resolved during execution so
that in each round r there is exactly one i ∈ {1, . . . , N} such that the critical section
Cri is entered (thus guaranteeing mutual exclusion). Exactly for that i the remainder
Rr

i will follow. All the other processes j 6= i are already in their next round r + 1
performing voting Vr+1

j and then notification T r+1
j . For a proper initialization of

the algorithm we stipulate an abridged round 0 in which one process, say P1, enters
its critical section C01 without previous voting and testing.

We now establish crucial independence and precedence relations between the
phases.

Proposition 5.6. The phases of the unfolded MUTEX satisfy the following inde-
pendence and precedence conditions, where r, r1, r2 > 0 and i, j ∈ {1, . . . , N}.

5.5 Case Study : Randomized Mutual Exclusion 87

r(i) := r_even

b_even < b(i)

d(i) := b(i) − b_even

b_even := b(i)

b(i) := 0

d(i) := 0

not(b_even < b(i))

......

{ r(i) = r_even /\ b_even > 0 }

{ b(i) > 0 }

"lottery"
b(i) := 1 b(i) := B

p=0

/\
(d(i)=0 /\ w(i)=0)

0.5 1 / 2B−1

(r(i) =/= r_even \/ b_even = 0)

Fig. 5.1. The PA for even voting Vi with guard p = 0. In the PA for odd voting
this guard is replaced by p = 1, and r even and b even are replaced by r odd and
b odd, respectively. Note that the lottery has B branches with the last two branches
having the same probability 1/2B−1.

1. Remainder Rr
i , idle voting IVr

i and idle notification IT r
i are independent (≁)

of any other phase.
2. If one of the rounds r1 and r2 is even and the other odd, voting Vr1

i and notifica-
tion T r1

i are independent of both voting Vr2
j and notification T r2

j , so Vr1
i ≁ Vr2

j ,
Vr1
i ≁ T r2

j , T r1
i ≁ Vr2

j , and T r1
i ≁ T r2

j .

3. A critical section Cri can only start if notification T r
i has been completed, which

in turn can only start if voting Vr
i has been completed: Vr

i ≺ T r
i and T r

i ≺ Cri .
4. A critical section Cri can only start if all processes j that contributed d(j) > 0 to
b even or b odd, respectively, in their voting Vr

j have completed their notification
T r
j , so T r

j ≺ Cri for all these j.
5. Notification T r+1

j and voting Vr+2
j can only start if some critical section Cri has

been completed: Cri ≺ T r+1
j and Cri ≺ Vr+2

j .

6. The critical section C01 and all votings V1
j with j ∈ {2, . . . , N} are not preceded

by any other phase and can thus start immediately.

88 5 Layered Transformations for Networks of Probabilistic Automata

not(w=0 /\ b(i)=b_even /\ b_even > 0)

w=1 and w(i)=0
w(i) := 1; w := 1

b_even := b_even − d(i)

d(i) := 0

r(i) := nil

b(i) := 0; d(i) := 0

b_even := b_even − d(i)

w=0 /\ b(i)=b_even /\ b_even > 0

p=1 /\ d(i) > 0

Fig. 5.2. The PA for even notification Ti. Note that the guard is p = 1∧ d(i) > 0.
In the PA for odd notification this guard is replaced by p = 0∧ d(i) > 0 and b even
by b odd. The right branch is taken when Pi is not the winner, where it waits in the
intermediate state until notified of the winner Pj via an update w := 1 in the left
branch of Tj .

Proof. Claim 1. This is clear because Rr
i , IVr

i , IT r
i do not access any of the shared

variables.
Claim 2. Let r1 be even and r2 be odd. Of the shared variables, voting and

notification both read p, and moreover, even voting Vr1
i accesses r even, b even,

and even notification T r1
i accesses b even and w, whereas odd voting Vr2

j accesses
r odd, b odd, and odd notification T r2

j accesses b odd and w. However, both T r1
i and

T r2
j have the same effect on the shared variable w, namely updating w to 1 (via the

left branch on Figure 2) in case the corresponding process has won the lottery in the
preceding voting phase. So even voting Vr1

i and notification T r1
i are independent of

odd voting Vr2
j and notification T r2

j . Similar arguments apply when r1 is odd and
r2 is even.

Claim 3. An even critical section Cri can only start if in round r process i left
its notification T r

i with w(i) = 1, which in turn is only possible if in the prior
voting phase Vr

i process i drew the highest number b(i) yielding b(i) = b even. The
corresponding precedence relation holds for an odd critical section.

Claim 4. An even critical section Cri can only start if b even = 0 holds, which
is only possible if in round r all processes j that increased b even by contributing
d(j) > 0 to it in their voting phase Vr

j have deducted the value d(j) again from b even
in their notification phase T r

j . Thus all these processes j must have completed their
notification T r

j before Cri can start. The corresponding precedence relation holds for
an odd critical section.

5.5 Case Study : Randomized Mutual Exclusion 89

��
��
��
��

��
��
��
��

s=0

w(i)=1 and b_even=0

0.50.5

w := 0; w(i) := 0 w := 0; w(i) := 0
b(i) := 0; r(i) := nil
p := 0

s := 1

r_even := 1

b(i) := 0; r(i) := nil

r_even := 0

p := 0

s := 1

{ s=1: inside the critical section }

s := 0; pc(i) := rem

Fig. 5.3. The PA for even critical section Ci. In the PA for odd critical section the
update p := 0 is replaced by p := 1, and r even by r odd, and b even by b odd.

pc(i)=rem

pc(i) := it pc(i) := nilpc(i) := nil

w(i)=0 pc(i)=it \/ d(i)=0

Fig. 5.4. The PA for remainder Ri (left), idle voting IVi (middle), and idle noti-
fication IT i (right).

90 5 Layered Transformations for Networks of Probabilistic Automata

odd (r = 1) : {p = 1}V1
1 + IV1

1 + C01
;

{p = 0}T 1
1 + IT 1

1 +R0
1

;

even (r = 2) : {p = 0}V2
1 + IV2

1 + C11
;

{p = 1}T 2
1 + IT 2

1 +R1
1

;

odd (r = 3) : {p = 1}V3
1 + IV3

1 + C21
;

{p = 0}T 3
1 + IT 3

1 +R2
1

;

even (r = 4) : {p = 0}V4
1 + IV4

1 + C31
;

{p = 1}T 4
1 + IT 4

1 +R3
1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

V1
2 + IV1

2 + C02
;

T 1
2 + IT 1

2 +R0
2

;

V2
2 + IV2

2 + C12
;

T 2
2 + IT 2

2 +R1
2

;

V3
2 + IV3

2 + C22
;

T 3
2 + IT 3

2 +R2
2

;

V4
2 + IV4

2 + C32
;

T 4
2 + IT 4

2 +R3
2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

V1
N + IV1

N + C0N
;

T 1
N + IT 1

N +R0
N

;

V2
N + IV2

N + C1N
;

T 2
N + IT 2

N +R1
N

;

V3
N + IV3

N + C2N
;

T 3
N + IT 3

N +R2
N

;

V4
N + IV4

N + C3N
;

T 4
N + IT 4

N +R3
N

Table 5.1. Unfolding of the parallelMUTEX algorithm up to round 4. For clarity,
we have indicated the round numbers r and as assertions the p-values required in
the guards of voting Vr

1 and notification T r
1 of process P1 in each round. The voting

and notification phases Vr
i and T r

i of the other processes Pi have the same guards.
Note that + binds stronger than ; and ‖, and that ; binds stronger than ‖.

Claim 5. Every even notification T r+1
j in round r+1 and every odd voting Vr+2

j

in round r + 2 is guarded by p = 1, which can only be established by the update
p := 1 of a previous odd critical section Cri in round r. Analogously, every odd
notification T r+1

j and every even voting Vr+2
j is guarded by p = 0, which can only

be established by the update p := 0 of a previous even critical section Cri .
Claim 6. Initially, we assume w(1) = 1 and b even = 0, so C01 can start immedi-

ately. Since initially also p = 0 and w(j) = 0, d(j) = 0 holds for all j ∈ {2, . . . , N},
voting V1

j can start for these j. ⊓⊔

Note that the precedences here are in parallel contexts.
We are now prepared for the layered restructuring.

Proposition 5.7. The unfolding of the parallel MUTEX algorithm shown in Ta-
ble 5.1 is po-equivalent (≡∗

po) to the unfolding of the layered MUTEX algorithm
shown in Table 5.2.

Proof. We check that the claims of Proposition 5.6 imply the necessary independence
and precedence relations between phases in different rounds and processes so that
Theorem 5.1 and Corollary 5.1 can be applied. Since by Claim 1, the phases for
remainder, idle voting, and idle notification are independent of any other phase, it
suffices to analyze voting, notification, and critical section. Of these we pick phases

5.5 Case Study : Randomized Mutual Exclusion 91

phr
j with a high round number r and argue that phases with a round number lower

than r are either independent of phr
j or precede phr

j .
Case 1. Consider a voting V4

j in round 4. Then in round 3, we have V4
j ≁ T 3

i

and V4
j ≁ V3

i by Claim 2. In round 2, we have C2i ≺ V4
j for the critical section

of one process i due to Claim 5. Moreover, by Claim 4, we have T 2
k ≺ C2i for all

processes k that contributed d(k) > 0 to the maximum lottery value in their voting
V2
k before T 2

k . All other processes l either abstained from voting before C2i , which we
can simulate by an independent idle voting IV2

l , or their voting V2
l occurred before

C2i but yielded only d(l) = 0. In both cases only an independent idle notification
IT 2

l can follow. By Claim 5, any notification T 2
k in round 2 must be preceded by one

critical section in round 1, say C1m ≺ T 2
k . Similar arguments apply when comparing

phases in lower even-numbered rounds with V4
j .

Case 2. Consider a notification T 3
j in round 3. Then in round 2, we have C2i ≺ T 3

j

for the critical section of one process i due to Claim 5. Note that the votings V3
l

of round 3 must have occurred before C2i as this changes the value of p. After C2i
only idle voting IV3

l of round 3 remain possible. Furthermore, in round 2 we have
T 3
j ≁ V2

k and T 3
j ≁ T 2

k due to Claim 2. By Claim 5, any notification T 2
k in round 2

must be preceded by one critical section in round 1, say C1m ≺ T 2
k . For C1m we argue

similar to Case 1, starting with C2i in round 2.
Case 3. Consider a critical section C3i in round 3. Again, we argue similar to

Case 1, starting with C2i in round 2. ⊓⊔

(V1
1 + IV1

1 + C01 ‖ V1
2 + IV1

2 + C02 ‖ · · · ‖ V1
N + IV1

N + C0N)
;

(T 1
1 + IT 1

1 +R0
1 ‖ T 1

2 + IT 1
2 +R0

2 ‖ · · · ‖ T 1
N + IT 1

N +R0
N)

;

(V2
1 + IV2

1 + C11 ‖ V2
2 + IV2

2 + C12 ‖ · · · ‖ V2
N + IV2

N + C1N)
;

(T 2
1 + IT 2

1 +R1
1 ‖ T 2

2 + IT 2
2 +R1

2 ‖ · · · ‖ T 2
N + IT 2

N +R1
N)

;

(V3
1 + IV3

1 + C21 ‖ V3
2 + IV3

2 + C22 ‖ · · · ‖ V3
N + IV3

N + C2N)
;

(T 3
1 + IT 3

1 +R2
1 ‖ T 3

2 + IT 3
2 +R2

2 ‖ · · · ‖ T 3
N + IT 3

N +R2
N)

;

(V4
1 + IV4

1 + C31 ‖ V4
2 + IV4

2 + C32 ‖ · · · ‖ V4
N + IV4

N + C3N)
;

(T 4
1 + IT 4

1 +R3
1 ‖ T 4

2 + IT 4
2 +R3

2 ‖ · · · ‖ T 4
N + IT 4

N +R3
N)

Table 5.2. Unfolding of the layered MUTEX algorithm up to round 4.

Proposition 5.7 holds for unfoldings up to any round number. This enables us
to conclude that (under the assumption of fairness) the parallel MUTEX is po-
equivalent (≡∗

po) to the following layered version:

92 5 Layered Transformations for Networks of Probabilistic Automata

layered MUTEX =

(odd V1 + IV1 + even C1 ‖ · · · ‖ odd VN + IVN + even CN)
;

(odd T1 + IT 1 +R1 ‖ · · · ‖ odd TN + IT N +RN)
;

(even V1 + IV1 + odd C1 ‖ · · · ‖ even VN + IVN + odd CN)
;

(even T1 + IT 1 +R1 ‖ · · · ‖ even TN + IT N +RN)

∗

For this layered version, we establish the following reduction in the number of loca-
tions. The number of locations |LP | for any of the constituent PA P is taken from
Fig. 5.1–5.4. For nondeterministic choice we calculate |LP+Q| = |LP | + |LQ| − 2,
for sequential composition |LP ;Q| = |LP | + |LQ| − 1, and for parallel composition
|LP‖Q| = |LP | · |LQ|, due to the definitions of these operators.

number of locations in ...

N ... MUTEX ... layered MUTEX reduction factor

3 15,625 1,453 ≥ 10
4 390,625 10,781 ≥ 36
5 9,765,625 81,085 ≥ 120

Such reductions will speed up model checking the algorithm, as confirmed experi-
mentally in [Sha15].

5.6 Conclusion

This chapter adopted the concept of communication-closed layers to probabilistic
automata, a popular operational framework for the specification and verification
of randomized distributed algorithms. The focus was on the theoretical underpin-
nings of incorporating layered separation into the framework of PA, for the analysis
of complex, distributed compositions of PA. While errors remain in our analysis,
and the precise choice of termination conditions and allowable resolutions of non-
determinism remain open, the application of layered separation has been nonetheless
been shown in the modelling and analysis of a randomized mutual exclusion algo-
rithm by Kushilevitz and Rabin [KR92], whose soundness has been experimentally
confirmed in [Sha15].

McIver, Gonzalia, Cohen, and Morgan in [MGCM08] distilled from the descrip-
tion of this algorithm algebraic axioms that enabled them to simplify its reasoning
by separation laws established for a probabilistic Kleene Algebra (pKA). We start op-
erationally, formalizing parts of the mutual exclusion algorithm of [KR92] in terms
of probabilistic automata and combine them by nondeterministic, sequential and
parallel composition. Then we check whether suitable independence and precedence
relations allow us to restructure parallel computations into layered ones, aiming (via
a state-space reduction) at a simpler verification.

5.6 Conclusion 93

It is interesting to ask whether our formalization satisfies the four axioms
of [MGCM08], which we cite here in their informal versions:

(1) Voting and notification commute.
(2) Notification occurs when the critical section is free.
(3) Voting occurs when the critical section is busy.
(4) It’s more likely to lose, the later the vote.

Following Kushilevitz and Rabin, we distinguish even and odd rounds. This dif-
ference is not addressed in [MGCM08]. Regarding (1), we show in Proposition 5.6
the independence (≁) of voting and notification, but only when voting is performed
in an even round and notification in an odd round (or vice versa). Of course, inde-
pendence implies commutativity. If voting Vr1

i and notification T r2
j both occur in

even rounds r1, r2 they interfere by writing to the shared variable b even. Interest-
ingly, Vr1

i and T r2
j still commute, but in a degenerate sense: since Vr1

i is guarded
by p = 0 and T r

j by p = 1, and p is not changed by Vr1
i or T r2

j , both Vr1
i ; T r2

j

and T r2
j ;Vr1

i end in a deadlock. The analogous statement is true for odd rounds. So
axiom (1) is indeed satisfied.

Regarding (2) and (3), the unfolding of the layered MUTEX in Table 5.2 shows
that notification T r

i takes place when no process is in its critical section and voting
Vr
i takes place when one process is in its critical section. So axioms (2) and (3) are

also satisfied.
Regarding (4), consider a sequence of even votings (cf. Fig. 5.1) by different

processes in a given even round r, say Vr
1 ; . . . ;Vr

m for m ≤ N . Then after Vr
1 , process

1 will be the (temporary) winner with some value k drawn with probability 1/2k

for 1 ≤ k ≤ B − 1, and with probability 1/2k−1 for k = B, where B = log2N + 4,
according to the geometric distribution assumed in the lottery. For process 2 to
outperform process 1, it must draw a value l > k, but this is only possible with
a probability of 1/2l < 1/2k, etc. The same argument is true for odd votings. So
axiom (4) is satisfied.

The satisfaction of the axioms (1)–(4) thus enables the application of the alge-
braic analysis of [MGCM08] to our operational model of Kushilevitz and Rabin’s
randomized mutual exclusion algorithm [KR92] in terms of probabilistic automata.

The pKA approach in [MGCM08] compares to our layering as follows:

• Central to the pKA approach in [MGCM08] is the exploitation of the separation
theorems introduced earlier in [Coh00] for the non-randomized setting. Such sep-
aration theorems simplify the (algebraic) reasoning of (randomized) distributed
systems by reducing complex interleavings into “separated” behaviours that ad-
mit individual analysis [MGCM08]. Our layering principle is similar in spirit:
we exploit structural properties (formalized by means of suitable independence
and precedence conditions that induce communication closedness) in complex
randomized distributed systems so as to admit a layered separation that conse-
quently simplifies verification.

• The work in [MGCM08] gives an axiomatic specification of some key properties
of the randomized mutual exclusion algorithm of Kushilevitz and Rabin [KR92].
These axioms then enable simplified reasoning via separation theorems expressed
in pKA. While the randomized mutual exclusion algorithm of [KR92] is likewise
considered in this chapter for demonstrating the applicability and potential of
our layered separation, we however provide an operational perspective of the

94 5 Layered Transformations for Networks of Probabilistic Automata

algorithm’s intricate via suitable PA models. An analysis of these PA models
then enables us to derive properties of the algorithm that were algebraically
specified in Figure 7 of [MGCM08], as a consequence of our layered separation
(cf. Proposition 5.7).

• Our layered separation and the pKA-based separation in [MGCM08] differ in
their respective operational models and the verification techniques that they
consequently admit. While the pKA-based separation aims for easier assertional
reasoning or interactive theorem proving using pGCL in which probabilities can
be treated as parameters, our layered separation is focussed on Segala’s PA,
aiming to achieve a syntactic (partial order) state space reduction prior to model
checking.

Other related work.

Partial-order reductions based on ample-set constructions for Markov Decision Pro-
cesses (MDPs) have been investigated in [BGC04, DN04] and shown to preserve
next-free probabilistic linear- and branching-time properties. The work in [GDF09]
discusses partial order reduction in the setting of distributed adversaries. A symbolic
on-the-fly partial-order reduction (termed confluence reduction) has been proposed
in [TSvdP11] for the preservation of probabilistic branching bisimulation, based on
a process-algebraic framework for data-enriched PA [KvST12]. More recently, lay-
ering was investigated for (probabilistic) transition systems exhibiting may / must
modalities [Sha15].

Open issues.

As mentioned earlier, the results of this chapter have not been fully worked out, and
issues remain concerning the soundness of the results, especially with regard to the
necessary termination conditions, the allowable resolutions of non-determinism, and
the class of properties preserved. We have nonetheless presented the results in their
current form, as our analysis of the mutual exclusion algorithm of [KR92] and its
experimental confirmation in [Sha15] might provide useful insights into fixing these
issues.

6

Robustness of Closed Perturbed

Probabilistic Timed Automata

6.1 Introduction

The widely studied timed automaton (TA) model [AD94] augments finite automata
with real-valued clocks, and provides for the modelling of non-deterministic real-time
systems, by having transition-guards and location-invariants that the clock values
need to satisfy. It however may be desirable to quantitatively express the relative
likelihood of the system exhibiting certain behaviour, which is particularly relevant
when evaluating real-time systems w.r.t. parameters such as reliability, availability,
and mean-time- to- / between- failures.

Probabilistic Timed Automata (pTA) [KNSS02] are an extension of TA that
model real-time systems in terms of discrete probability distributions annotating the
transitions between locations, thereby expressing both non-deterministic and prob-
abilistic behaviour. The pTA model has been used to check system requirements
expressed as probabilistic reachability properties, as well as properties expressible
in pTCTL (Probabilistic Timed Computation Tree Logic) [KNSS02, KNSW07] -
an extension of TCTL to deal with probability. Expected Reachability properties are
considered in [KNPS06]. Model-checking of pTA against such property classes is fea-
sible, owing to a notion of region equivalence [KNSS02] and digitization [KNPS06],
the latter being useful for the efficient computation of expected reachability proper-
ties, but whose application is restricted to the (realistic) subclass of pTA that are
closed and diagonal-free, i.e., the guards and the invariants admit only non-strict
comparisons of individual clocks with constants.

As with TA, the number of regions is exponential in the number of clocks,
rendering region-based model-checking of pTA impractical. Efficient symbolic al-
gorithms that manipulate Markov Decision Processes in the form of Zone-Graphs
are presented in [KNSS02, KNSW07, KNP09]. The symbolic probabilistic reacha-
bility algorithm in [KNSS02] is fully forward, and is an adaptation of the standard
zone-based algorithm used in TA model-checkers such as UPPAAL. It computes (a
safe approximation of) the maximum probability of reaching an unsafe target state,
or equivalently, the minimum probability of avoiding the unsafe state. This tech-
nique is particularly useful in the verification of quantitative invariance or safety
properties, where we are interested in the probability of reaching an unsafe target.
The probability of time-bounded reachability computed symbolically in [KNSS02] is

96 6 Robustness of Closed Perturbed Probabilistic Timed Automata

however not exact, but rather an upper bound on the true probability of reachabil-
ity. More recently, [KNSW07, KNP09] have presented symbolic algorithms for pTA
that entail backward analysis / stochastic game-based abstraction-refinement, for
the exact computation of (max. / min.) probabilistic reachability. Given a pTA and
a (bad) target state given as a location-zone pair (l, B), the symbolic algorithms
in [KNSW07, KNP09] essentially compute the maximum / minimum probability
(w.r.t. all possible resolutions of the non-deterministic choices in the pTA’s under-
lying probabilistic timed structure, which is in fact an infinite-state Markov Decision
Process) with which the target state could be reached.

However, all the above existing analysis techniques for pTA consider an idealized
behaviour of the clocks, in the sense that they are assumed to be fully synchronous,
unlike in practice, where the clocks could actually drift. The effect of such impre-
cisions, modelled by a parameter ε > 0 characterizing the extent of the potentially
enhanced non-determinism has been investigated in Chapter 2, where it has been
shown that an enlarged robust reach-set computation is not necessary in order to
decide on robust safety for TA subject to realistic models of drifting clocks and
system behaviour, either by limiting the life-time of the system to be finite, or by
subjecting the drifting clocks to regular resynchronization.

In this chapter, we consider pTA with drifting clocks that could occur in prac-
tice, and investigate the adversarial role that such perturbations could possibly play
in enhancing the non-deterministic behaviour of the system. In contrast with pTA
that have perfectly synchronous clocks, pTA under perturbations exhibit greater
non-determinism by having clocks that could drift relative to each other. We at-
tempt to show that such enhanced non-determinism does not actually influence the
computation of the minimum / maximum probabilities of avoiding / reaching a
target state under arbitrarily small perturbations in the case of pTA having closed
guards and invariants, when one considers the following two realistic models of drift-
ing clocks and system behaviour, as in Chapter 2 for TA:

1. pTA models of finite life-time systems with the clock-rates being in an ε >
0 interval around 1, with the relative drift between clocks increasing without
bound with the passage of time.

2. pTA models of regularly resynchronized system, with potentially infinite life-
time, but where the relative drift between clocks is always bounded by 0 < ε < 1
irrespective of the extent of time-passage.

We thus attempt to show that pTA (under certain restricted, yet realistic dy-
namics) are robust against clock-drift, and are thus amenable to the symbolic tech-
niques used for computing probabilistic reachability in (unperturbed) pTA, thereby
enabling an efficient computation of probabilistic performance measures on realistic
system models.

The rest of the chapter is organized as follows: Section 6.2 discusses the pTA
model, and introduces our notion of equivalence of adversaries and probabilistic
timed structures that is later used to show preservation of probabilistic reachability.
Section 6.3 considers pTA having relative drifts between the clocks, and shows the
preservation of probabilistic reachability under arbitrarily small perturbations, for
systems having finite life-time. Section 6.4 shows that probabilistic reachability is
again preserved when one considers pTA where the relative drift between the clocks
is always bounded through regular resynchronization, irrespective of the extent of
time passage, with no restrictions on the system’s lifetime. Section 6.5 concludes the

6.2 Probabilistic Timed Automata and Equivalences 97

chapter. The results of this chapter, while appearing to be straightforward proba-
bilistic extensions to the corresponding results for timed automata in Chapter 2,
have not been fully worked out.

6.2 Probabilistic Timed Automata and
Equivalences

Given a finite set C of clocks, a clock valuation over C is a map v : C 7→ R≥0 that
assigns a non-negative real value to each clock in C. If n is the number of clocks, a
clock valuation is basically a point in R

n
≥0, which we henceforth denote by u,v etc. A

zone over a set of clocks C is generated by the grammar g ::= x⊲d | x−y⊲d | g∧g,
where x, y ∈ C, d ∈ N, and ⊲ ∈ {<,≤, >,≥}. The set of zones over C is denoted
Z(C). A closed zone is one in which ⊲ ∈ {≤,≥}, and we denote the set of closed
zones over C by Zc(C). A zone with no bounds on clock differences (i.e., with no
constraint of the form x − y ⊲ d) is said to be diagonal-free, and we denote the
corresponding set of zones by Zd(C). The set Zcd(C) denotes zones that are both
closed and diagonal-free. The set ZcdU (C) denotes the set of closed, diagonal-free
zones having no lower bounds on the clocks.

Definition 6.1 (Probabilistic Timed Automata). [KNSS02] A Probabilistic
Timed Automaton (pTA) is a tuple G = (L,C, l0, inv, prob,< gl >l∈L), with

• a finite set L of locations and a finite set C of clocks, with |C| = n
• An initial location l0 ∈ L
• inv : L 7→ ZcdU (C) assigns invariants to locations

• prob : L 7→ 2µ(L×2C) assigns to each location a (finite, non-empty) set µ of
discrete probability distributions on L× 2C

• a family of functions < gl >l∈L, where, for any l ∈ L, gl : prob(l) 7→ Zcd(C)
assigns to each p ∈ prob(l) an enabling guard gl(p). An edge between two lo-
cations (l, l′) involving a probability distribution p ∈ prob(l), an enabling guard

gl(p), and a reset set X ⊆ C is denoted l
p,gl(p),X−→ l′.

Note that we assume that the enabling guards of the pTA are closed and
diagonal-free zones. Location invariants in addition have only upper-bounds on
clocks.

As for TA, the semantics of pTA include (invariant consistent) time-passage
transitions within a given discrete location, and instantaneous switch transitions
by taking an (enabled) edge between discrete-locations. However, in contrast with
TA whose semantics involve switch transitions that are only non-deterministic, the
switch transitions in pTA semantics are both non-deterministic and probabilistic,
and consist of the following two steps performed in succession, starting from some
location l: The system first makes a non-deterministic choice between the set of
distributions p ∈ prob(l), whose corresponding guard is satisfied by the current
values of the clocks. Next, assuming that such a probability distribution p is chosen,
the system then makes a corresponding probabilistic transition. For l′ ∈ L and
X ⊆ C, the probability that the system executes a transition from l to l′, with all
clocks in X being reset to 0 is given by p(l′, X). The pTA semantics is described

98 6 Robustness of Closed Perturbed Probabilistic Timed Automata

formally in terms of its corresponding Probabilistic Timed Structure (pTS), defined
as follows:

Definition 6.2 (Probabilistic Timed Structure). [KNSS02] A Probabilistic
Timed Structure (pTS) is a tuple M = (Q,Steps), where Q is a set of states,
Steps : Q 7→ 2R≥0×µ(Q) is a function that maps each state q ∈ Q to a set Steps(q)
of pairs of the form (t, p), where t ∈ R≥0 and p ∈ µ(Q).

Steps(q) is the set of transitions that can be nondeterministically chosen in state q.
Each transition takes the form (t, p), where t represents the duration of the transi-
tion, and p is the probability distribution used to determine the possible succesor
states. Given a non-deterministic choice (t, p) ∈ Steps(q) in state q, a probabilistic
transition is then made to state q′ with probability p(q′), after t time units.

Note that such a pTS is a (potentially infinite) Markov Decision Process. A
path of a pTS M = (Q,Steps) is a (non-empty and possibly infinite) sequence

π = q0
t0,p0→ q1

t1,p1→ q2 · · · , where qi ∈ Q, (ti, pi) ∈ Steps(qi) and 0 < pi(qi+1) ≤ 1 for
all 0 ≤ i ≤ |π|. Paths in a pTS arise by the resolution of non-determinism by means
of adversaries, defined as follows:

Definition 6.3 (Adversary of a Probabilistic Timed Structure). [KNSS02]
An Adversary A of a pTSM = (Q,Steps) resolves all its non-deterministic choices,
by mapping every finite path π of M to a pair (t, p), such that A(π) = (t, p) ∈
Steps(last(π)), where last(π) denotes the last state of π.

We denote by A the set of all adversaries of the pTSM. Similarly, an adversary
Ai of history i resolves non-deterministic choices inM upto i steps, by considering
every finite path π ofM with |π| ≤ i. The set of all adversaries ofM of history i is
denoted Ai.

Under a given an adversary A of a pTSM, the behaviour of the pTS is purely
probabilistic, and corresponds to a Sequential Markov Chain defined over the set
PathA

fin of finite paths under A of the pTS. This Sequential Markov Chain is given
by MCA = (PathA

fin,P
A), with :

PA(π1, π2) =

{
p(q) if A(π1) = (t, p) ∧ π2 = π1

t,p→ q,

0 otherwise.

It is then possible to define a probability measure on the set of finite paths
PathA

fin of a pTS under a given adversary that uniquely depends on the corre-
sponding Sequential Markov Chain MCA (see [KNSS02] for further details).

This then leads to our notion of equivalent adversaries between two probabilistic
timed structures as follows:

Definition 6.4 (Equivalence of Adversaries). LetM andM′ be two pTS, and
A resp. A′ be some adversary ofM resp.M′. Let MCA = (PathA

fin,P
A) be the Se-

quential Markov Chain corresponding toM under A, and MCA′

= (PathA′

fin,P
A′

)
be the Sequential Markov Chain corresponding to M′ under A′. Then A is said to
be equivalent to A′, denoted A ≡ A′ if

• ∀π ∈ PathA
fin [A(π) = (t, p) ∧ last(π)

t,p→ q ⇒ ∃π′ ∈ PathA′

fin : A′(π′) =

(t′, p′) ∧ last(π′)
t′,p′→ q′ ∧ p(q) = p′(q′)]

6.2 Probabilistic Timed Automata and Equivalences 99

• ∀π ∈ PathA′

fin [A′(π) = (t, p) ∧ last(π)
t,p→ q ⇒ ∃π′ ∈ PathA

fin : A(π′) =

(t′, p′) ∧ last(π′)
t′,p′→ q′ ∧ p(q) = p′(q′)]

The following lemma then establishes a useful consequence of such equivalent
adversaries:

Lemma 6.1. LetM andM′ be two pTS, and A and A′ be their corresponding ad-
versaries. Let MCA = (PathA

fin,P
A) be the Sequential Markov Chain corresponding

to M under A, and MCA′

= (PathA′

fin,P
A′

) be the Sequential Markov Chain cor-
responding toM′ under A′. If A ≡ A′, then:

• ∀π1, π2 ∈ PathA
fin ∃π1

′, π2
′ ∈ PathA′

fin : PA(π1, π2) = PA′

(π1
′, π2

′)

• ∀π1, π2 ∈ PathA′

fin ∃π1
′, π2

′ ∈ PathA
fin : PA′

(π1, π2) = PA(π′
1, π

′
2)

The proof is immediate from the definitions of a Sequential Markov Chain and
equivalence of adversaries.

This lemma intuitively tells us that equivalent adversaries induce exactly the
same underlying Sequential Markov Chain by mapping corresponding paths to equiv-
alent probability distributions having identical next-state transition probabilities, but
delaying for possibly different time instants. Our equivalence of adversaries thus in-
duces a time abstract preservation of next-state transition probabilities of all enabled
probability distributions.

The definition of equivalence of adversaries is now lifted to pTS (resp. sets of
adversaries) as follows:

Definition 6.5 (Equivalence of pTS). LetM andM′ be two pTS, with A and A′

denoting the corresponding sets of all possible adversaries. Then M and M′ (resp.
A and A′) are said to be equivalent, denotedM≡M′ (resp. A ≡ A′) if:

• ∀A ∈ A ∃A′ ∈ A′ : A ≡ A′

• ∀A ∈ A′ ∃A′ ∈ A : A ≡ A′

We now derive the pTS MG corresponding to a given pTA G, in order to for-
mally describe its semantics. For a given pTA G = (L,C, l0, inv, prob,< gl >l∈L),
the corresponding pTS is an (infinite-state) Markov Decision Process given by
MG = (QG, StepsG), consisting of a set QG of (invariant consistent) states, and
a transition relation (incorporating time-passage and location switches) that is both
non-deterministic and probabilistic in nature.

• A state q ∈ QG is a pair (l,u) ∈ L× R
n
≥0 such that u |= inv(l).

• The function StepsG : QG 7→ 2R≥0×µ(QG) assigns to each state in QG a set of
transitions, each of which take the form of a pair (t, p̃), consisting of a time du-
ration t ∈ R≥0 and a probability distribution p̃ ∈ µ(QG), over the set of states
QG. For each (l,u) ∈ QG, transitions are defined as follows:

1. (t, p̃) ∈ StepsG(l,u) if ∃p ∈ prob(l) such that:
– u + t |= gl(p) ∧ inv(l). Here u + t denotes the addition of t to each

component of u.

– For any (l′,u′) ∈ QG, with u′ = (u+ t)[X := 0] for an edge l
p,gl(p),X−→ l′,

p̃(l′,u′) = p(l′, X)

100 6 Robustness of Closed Perturbed Probabilistic Timed Automata

2. (t, p̃) ∈ StepsG(l,u) if
– u+ t |= inv(l)
– for any (l′,u′) ∈ QG :

p̃(l′,u′) =

{
1, if (l′,u′) = (l,u+ t)

0 otherwise

Thus, only action-distributions of the above PTS are probabilistic: delay-distribution
pairs always comprise a point distribution [KNPS06]. We assume here for simplicity
that each probabilistic switch (from a given distribution) is mapped to a unique
target location. 1

A canonical initialized path π of such a pTS is an alternating sequence of non-
deterministic time-passage and probabilistic location switches, starting from the

initial state, given as: π = (l0,0)
t0,p0→ (l1,x1)

t1,p1−→ (l2,x2)
t2,p2→ The set AG

of adversaries of MG may then be defined as previously, over its finite, canonical
initialized paths.

The above formulation of a pTS and its adversaries for a given pTA G leads us
to the definition of the probabilistic reachability problem as follows: Let G be a pTA,
MG be its corresponding pTS having a set AG of adversaries. For a given adversary
A ∈ AG, we can define a probability measure over the set of paths from a state q of
MG, and in particular, the probability pAq (F) of reaching a target set of locations
F ⊆ L starting from q, under the given adversary A. For a given set F of target
locations, probabilistic reachability then involves the computation of :

pmin
MG

(F) = infA∈AG
pAq0(F)

and
pmax

MG
(F) = supA∈AG

pAq0(F)

where q0 = (l0,0). Practically feasible techniques exist for the computation of these
probabilities, as given in [KNSS02, KNSW07, KNPS06, KNP09]. For the rest of
this chapter, we will only consider the computation of pmax

MG
(F), as we are mainly

interested in probabilistic safety, which corresponds to the minimum probability of
avoiding a target location, or equivalently, the maximum probability of reaching a
target location. Our results however easily extend to pmin

MG
(F).

Note that the pTA semantics discussed so far assumes perfectly synchronous
clocks, unlike in practice, where the clocks could actually drift relative to each other.
Such drifts increase the available non-deterministic choices for an adversary of the
underlying pTS, resulting in a corresponding perturbed pTS. We however attempt to
show in the rest of this chapter that such enhanced non-determinism in the perturbed
pTS does not really play a role in the computation of pmax

MG
(F) for pTA having

closed enabling guards and invariants, when one places realistic restrictions on either
the system’s life-time, or on the extent of the relative drifts between clocks. We aim
to establish conditions wherein the equivalence as defined in this section is preserved
between the probabilistic timed structures obtained from a given pTA by considering
perfectly synchronous clocks on the one hand, and drifting clocks on the other. Such
equivalence between the pTS crucially depends on the closedness of the guards and
invariants in the syntactic structure of the pTA, and leads in turn to the preservation
of probabilistic reachability, as will be elaborated next.

1 We would otherwise have p̃(l′,u′) =
∑

X∈C∧(u+t)[X:=0]=u′ p(l′, X) for switching
transitions.

6.3 Robustness against drifting clocks under finite life-time 101

6.3 Robustness against drifting clocks under
finite life-time

As in Section 2.3, the phenomenon of drifting clocks is modelled by introducing
a parameter ε > 0 that characterizes the relative drift between the clocks. The

rates of the clocks are assumed to be within the range
[

1
1+ε

, 1 + ε
]
. Note that,

athough the clock-rates are bounded by an ε-interval around 1, the actual relative
drift between the clocks may become arbitarily large with increasing delay, and
therefore manifests as unbounded in systems having an infinite life-time. This effect
has been exploited for TA in [Pur00, WDMR08, DK06, Dim07, JR11, KLMP14,
San15] to show that even the smallest of drifts can lead to extra reachable states in
TA that were previously unreachable under perfect clocks, even for closed TA that
additionally satisfy the progress cycle assumption, wherein each clock of the TA is
reset at least once in each cycle.

We will however attempt to show here that closed pTA (with no restrictions on
the cycles) are “robust” relative to disturbances that manifest as unbounded relative
drifts between the clocks, so long as the life-time of the system is finite. This result
extends the corresponding result for TA in Section 2.3.

Such drifting clocks for a given pTA G under a drift parameter ε then result in
a corresponding perturbed pTSMε

G = (Qε
G, Steps

ε
G), obtained as follows:

• A state q ∈ Qε
G is a pair (l,u) ∈ L× R

n
≥0 such that u |= inv(l).

• The function StepsεG : Qε
G 7→ 2R≥0×µ(Qε

G) assigns to each state in Qε
G a set

of transitions, each of which take the form of a pair (t, p̃), consisting of a time
duration t ∈ R≥0 and a probability distribution p̃ ∈ µ(Qε

G), over the set of states
Qε

G. For each (l,u) ∈ Qε
G, transitions are defined as follows:

1. (t, p̃) ∈ StepsεG(l,u) if ∃p ∈ prob(l) such that

∃u′ ∈ [u+ t
1+ε

,u+ t(1 + ε)] : u′ |= gl(p) ∧ inv(l), and
for any (l′′,u′′) ∈ Qε

G, with u′′ = u′[X := 0] for an edge l
p,gl(p),X−→ l′′,

p̃(l′′,u′′) = p(l′′, X)
2. (t, p̃) ∈ StepsεG(l,u)

∃u′ ∈ [u+ t
1+ε

,u+ t(1 + ε)] s.t u′ |= inv(l), and

for any (l′′,u′′) ∈ Qε
G :

p̃(l′′,u′′) =

{
1, (l′′,u′′) = (l,u′)

0 otherwise

As for the non-perturbed case, one can then define canonical initialized paths
through such a perturbed pTS, and adversaries corresponding to such finite canon-
ical initialized paths. We are particularly interested in adversaries of history i ∈ N,
corresponding to canonical initialized paths of length i, which we use in establishing
the following theorem concerning the equivalence as defined in the previous section
between the probabilistic timed structures of a given pTA with closed guards and
invariants, having perturbed clocks on the one hand, and perfectly synchronized
clocks on the other.

102 6 Robustness of Closed Perturbed Probabilistic Timed Automata

Theorem 6.1. Given a pTA G (having closed guards and invariants), letM (resp.
Mε) denote the corresponding pTS (resp. perturbed pTS with perturbation ε) as de-
scribed in Section 2 (resp. Section 3)2. Let Ai (resp. Aε

i) denote the set of adversaries
of M (resp. Mε) of history i defined over the corresponding sets of canonical ini-
tialized paths Πi (resp. Π

ε
i) of length i. It then holds that ∀i ∈ N ∃εi > 0 : Ai ≡ Aεi

i

Proof. (Sketch) As the perturbed pTS exhibits greater non-determinism, it always
includes behaviour that is possible without perturbation, i.e., every adversary of
the non-perturbed pTS is equivalent (as defined in the previous section) to some
adversary of the perturbed pTS. It therefore suffices to show that one can similarly
find an equivalent adversary in the non-perturbed pTS for every adversary in the
perturbed pTS. We define for this purpose the set of grid-points in N

n surround-
ing a given valuation u ∈ R

n
≥0 as Grid(x) = {xg ∈ N

n | dist(x,xg) < 1}, where
dist(x,xg) = max1≤i≤n|xi−xgi|. Induction over i should give: ∀i ∈ N ∃εi > 0 ∀A ∈
Aεi

i ∀π ∈ Πεi
i : A(π) = (t, p) ∧ last(π)

t,p→ (l,x) ⇒ ∃ π′ ∈ Πi, A
′ ∈ Ai, x′ ∈

Grid(x) : A′(π′) = (t′, p′) ∧ last(π′)
t′,p′→ (l,x′) ∧ p′(l,x′) = p(l,x).

Note that the probabilistic choices here are preserved with identical next-state tran-
sition probabilities, while the non-deterministic delays are time abstracted. This is
feasible owing to the fact that the guards and invariants in our case are closed, and
are thus always enabled by some grid point. The proof then follows from the above
result in conjunction with Definitions 6.4 and 6.5. ⊓⊔

Theorem 6.1 therefore implies that, for pTA having closed guards and invari-
ants, it is always possible to choose an appropriate (strictly positive) value of the
perturbation parameter ε depending on the computational history i, such that the
enhanced non-determinism induced by the perturbation does not really affect the
available probabilistic choices, leading to a preservation of probabilistic reachability
properties. The following corollary is then an immediate consequence of Theorem
6.1 and Lemma 6.1.

Corollary 6.1. For a given pTA G and a perturbation parameter ε > 0, and for a
set of target locations F , let pmax = supA∈A pAq0(F) denote the maximum probability
of reaching F under all possible adversarial resolutions of the underlying pTS, while
pεi = supA∈Aε

i
pAq0(F) denotes the maximum probability of reaching F under all

possible adversarial resolutions of history i of the perturbed pTS corresponding to
perturbation ε > 0. It then holds that:

limi→∞ limε→0 pεi = pmax

Corollary 6.1 essentially states the preservation of the maximum probabilistic
reachability under possibly unbounded relative drift between the clocks of the pTA,
by choosing appropriately small perturbation parameters ε > 0 for increasingly large
computational histories i, i.e., the larger the computational history, the smaller will
be the corresponding admissible perturbation. From Theorem 6.1, one may also
infer similar results for the minimum probability of reaching a target state under
all possible adversial resolutions. Note that the limits in this corollary may not be
swapped, as doing so would make the allowable perturbation independent of the
history, which, in this pertubation model entailing unbounded relative drift between
the clocks, would not preserve the maximum probabilistic reachability.

2 We drop the reference to G here for ease of notation.

6.4 Robustness against drifting clocks under resynchronization 103

6.4 Robustness against drifting clocks under
resynchronization

As in Section 2.4, we incorporate a clock resynchronization scheme into pTA by
associating a drift-offset δ ∈ [−ε, ε]n for each clock valuation x ∈ R

n. This drift-
offset keeps track of the extent to which the individual clocks in x have deviated from
an implicit reference clock maintained by the synchronization scheme. The states of
the underlying PTS in this semantics are thus tuples (l,u, δ) ∈ L × R

n × [−ε, ε]n.
As the deviation δ is controlled by the synchronization scheme such that it always
remains below ε, the corresponding perturbed PTSMε

G = (Qε
G, Steps

ε
G) for a given

ε > 0 is obtained as follows:

• A state q ∈ Qε
G is a triple (l,u, δ) ∈ L× R

n × [−ε, ε]n such that u |= inv(l).
• The function StepsεG : Qε

G 7→ 2R×µ(Qε
G) assigns to each state in Qε

G a set of
transitions, each of which take the form of a pair (t, p̃), consisting of a time
duration t ∈ R and a probability distribution p̃ ∈ µ(Qε

G), over the set of states
Qε

G. For each (l,u, δ) ∈ Qε
G, transitions are defined as follows:

1. (t, p̃) ∈ StepsεG(l,u, δ) if ∃p ∈ prob(l), ∃δ′ ∈ [−ε, ε]n such that:
– u+ t− δ + δ

′ |= gl(p) ∧ inv(l)
– For any (l′′,u′′, δ′′) ∈ Qε

G, with u′′ = (u + t − δ + δ
′)[X := 0] and

δ
′′ = δ

′[X := 0] for an edge l
p,gl(p),X−→ l′′,

p̃(l′′,u′′, δ′′) = p(l′′, X)
2. (t, p̃) ∈ StepsεG(l,u) if

– ∃δ′ ∈ [−ε, ε]n such that u+ t− δ + δ
′ |= inv(l)

– for any (l′′,u′′, δ′′) ∈ Qε
G :

p̃(l′′,u′′, δ′′) = 1 if
(l′′,u′′, δ′′) = (l,u+ t− δ + δ

′, δ′)
and p̃(l′′,u′′, δ′′) = 0 otherwise

A result stronger than Theorem 6.1 of the previous section may then be proven
concerning the behaviour of the perturbed PTS under such a synchronization
scheme.

Theorem 6.2. Given a pTA G (having closed guards and invariants), letM (resp.
Mε) denote the corresponding PTS (resp. perturbed PTS with perturbation ε due
to resynchronization) as described in Section 6.2 (resp. Section 6.4). Let Ai (resp.
Aε

i) denote the set of adversaries of M (resp. Mε) of history i defined over the
corresponding sets of canonical initialized paths Πi (resp. Πε

i) of length i. It then
holds that ∀0 < ε < 1 ∀i ∈ N : Ai ≡ Aε

i

Proof. (Sketch) Similar to Theorem 6.1, induction over i should give

∀0 < ε < 1 ∀i ∈ N ∀A ∈ Aε
i ∀π ∈ Πε

i : A(π) = (t, p) ∧ last(π)
t,p→ (l,x) ⇒

∃ π′ ∈ Πi, A
′ ∈ Ai, x′ ∈ Grid(x) : A′(π′) = (t′, p′) ∧ last(π′)

t′,p′→ (l,x′) ∧
p′(l,x′) = p(l,x) The proof then follows from the above result in conjunction with
Definitions 6.4 and 6.5. ⊓⊔

A consequence of Theorem 6.1 and Lemma 6.1 is that, for pTA having closed
guards and invariants, and subject to perturbations that are controlled by a regu-
lar resynchronization scheme, the enhanced non-determinism induced by the per-
turbation again does not affect the available probabilistic choices, so long as the

104 6 Robustness of Closed Perturbed Probabilistic Timed Automata

synchronization scheme maintains the perturbation parameter ε strictly below 1,
but irrespective of the computational history i. This in turn implies an equivalence
between the probabilistic timed structures M and Mε, i.e., M ≡ Mε, and leads
to a stricter preservation of probabilistic reachability properties, as stated in the
following corollary:

Corollary 6.2. For a given pTA G and a perturbation parameter 0 < ε < 1 con-
trolled by a synchronization scheme, let M (resp. Mε) denote the corresponding
PTS (resp. perturbed PTS). For a set of target states F , let pmax = supA∈A pAq0(F)
denote the maximum probability of reaching F under all possible adversarial reso-
lutions of the underlying PTS, while pε = supA∈Aε pAq0(F) denotes the maximum
probability of reaching F under all possible adversarial resolutions of the perturbed
PTS corresponding to perturbation 0 < ε < 1 controlled by the synchronization
scheme. It then holds that:

∀0 < ε < 1 : pε = pmax

Corollary 6.2 states a stronger result concerning the preservation of the maxi-
mum probabilistic reachability under clock drifts appropriately bounded by a syn-
chronization scheme, with no restrictions now on the life-time of the system. As was
the case with Corollary 6.1, Corollary 6.2 also applies for the computation of the
minimum probability of reaching a target state under all possible adversial resolu-
tions.

6.5 Conclusion

We considered the (minimum and maximum) probabilistic reachability properties
for the well-studied formalism of Probabilistic Timed Automata under the realistic
assumption of closed guards and invariants - closed and diagonal- free pTA have
been shown to be very expressive in the modelling and analysis of large scale real-
world applications such as the dynamic configuration protocol of IPv4 link-local
addresses, the IEEE 802.11 medium access control protocol for wireless local area
networks, and the IEEE 1394 FireWire root contention protocol [KNPS06]. We
have attempted to render such analysis more realistic by considering the possible
adversarial effects of perturbations in the form of drifting clocks that could occur
in practice. We have attempted to show that such perturbations (and the resultant
enhanced non-determinism) do not in fact affect the available probabilistic choices
under the following realistic restrictions:

• The system has a finite life-time, such that for each computational history i, an
appropriate small perturbation parameter εi can be chosen such that probabilis-
tic reachability properties are preserved (cf. Theorem 6.1, Corollary 6.1).

• The system is subjected to a regular resynchronization scheme that always main-
tains a uniformly bounded relative drift ε between the clocks, leading again to
the preservation of probabilistic reachability properties, but now for 0 < ε < 1
irrespective of the systems life-time (cf. Theorem 6.2, Corollary 6.2).

6.5 Conclusion 105

These results may be viewed as a step towards enabling the (re-)usage of the existing
rich machinery of algorithms and tools described in [KNSS02, KNPS06, KNSW07,
KNP09] for the verification of a more realistic class of real-time system models that
exhibit both non-deterministic and probabilistic behaviour. Subsequent to a full
development of these results, future work includes their extensions to a richer class
of properties, such as expected reachability properties [KNPS06] that are relevant for
fault-tolerant performance measures such as the mean-time-(to/between)- failures
of components.

7

Conclusion

We now summarize the results of the preceding chapters, together with some per-
spectives on classifying the various models presented in this dissertation within the
unifying framework of symbolic probabilistic systems [KNS01].

1. Chapter 2 contributes to the quantitative axis of this dissertation, by demon-
strating the robust safety for timed automata with closed guards and invariants
against perturbations manifesting as drifts in the clocks. Our notions of robust
safety required either (a) the allowable drift to be dependent on the number of
iterations while increasing without bound with time-passage, yielding a strictly
positive robust safety margin for systems having an arbitrary, but finite life-
time (cf. Section 2.3), or (b) the clocks to be regularly resynchronized such that
extent of the drifts always remained bounded, yielding a robust safety margin
of 1 irrespective of the extent of time passage (cf. Section 2.4).

2. Chapter 3 is a second contribution to the quantitative axis of this dissertation,
with an investigation of the optimum reachability problem for Multi-Priced
Timed Automata that admit both positive and negative costs on edges and lo-
cations, thus bridging the gap between the results of [BBBR07] and of [LR08].
We showed in Section 3.3 that even the location reachability problem is unde-
cidable for MPTA equipped with both positive and negative costs, provided the
costs are subject to a bounded budget, in the sense that paths of the underlying
Multi-Priced Transition System (MPTS) that operationally exceed the budget
are considered as not being viable. This undecidability result follows from an
encoding of Stop-Watch Automata using such MPTA, and applies to MPTA
with as few as two cost variables, and even when no costs are incurred upon
taking edges. In Section 3.4, we then restricted the MPTA such that each viable
quasi-cyclic path of the underlying MPTS incurs a minimum absolute cost. Un-
der such a condition, the location reachability problem is shown to be decidable
and the optimum cost is shown to be computable for MPTA with positive and
negative costs and a bounded budget. These results follow from a reduction of
the optimum reachability problem to the solution of a linear constraint system
representing the path conditions over a finite number of viable paths of bounded
length.

3. Chapter 4 is our main contribution to the structural axis of this dissertation.
We investigate a series of transformations that aim at easier subsequent verifi-

7 Conclusion 107

cation of real-time systems with shared data variables, modelled as networks of
extended timed automata (ETA). Our contributions to this end are the follow-
ing: (1) We equip ETA with a library of composition operators, including one
for layered composition, intermediate between parallel and sequential composi-
tion. Under certain non-interference and/or precedence conditions imposed on
the structure of the ETA networks, the communication closed layer (CCL) laws
and associated partial-order (po-) and (layered) reachability equivalences are
shown to hold, cf. Sections 4.3 and 4.4. (2) Next, we investigate (under certain
cycle conditions on the ETA) the (reachability preserving) transformations of
separation and flattening aimed at reducing the number of cycles of the ETA,
cf. Section 4.5. (3) We then show that our separation and flattening in Section
4.5 may be applied together with the CCL laws in Sections 4.3 and 4.4, in order
to restructure ETA networks such that the verification of layered reachability
properties is rendered easier. This interplay of the three structural transforma-
tions (separation, flattening, and layering) is demonstrated in Section 4.6 on an
enhanced version of Fischers real-time mutual exclusion protocol for access to
multiple critical sections.

4. Chapter 5 attempts to contribute to both the quantitative and structural axes of
this dissertation, with an adaptation of the CCL concept to the formal reason-
ing of randomized distributed algorithms. We do so by enriching probabilistic
automata with a layered composition operator, as in Chapter 4 for the non-
randomized real-time setting. Layered composition is used in Section 5.3 to
establish probabilistic counterparts of the CCL laws that exploit independence
and/or precedence conditions between the constituent PA. The probabilistic
CCL laws are then used to enable partial order (po-) equivalence when layered
composition is replaced by sequential composition. The conditions for termina-
tion and the allowable adversarial resolutions of non-determinism, as well as the
full class of properties preserved by our layered transformations in the proba-
bilistic setting remain unclear. We have nonetheless demonstrated the feasibility
of our layered transformations on the randomized mutual exclusion algorithm
of [KR92], complementing an algebraic approach for analyzing this algorithm in
[MGCM08]. The preservation of a large class of probabilistic temporal properties
by our layered transformation of the algorithm of [KR92] has been confirmed by
extensive experimental evaluation in [Sha15], with our transformation entailing
a state-space reduction by a factor of 3. We speculate later in this chapter on the
insights that might be drawn from our layered transformation of the algorithm
of [KR92].

5. Chapter 6 attempts to contribute to the quantitative axis of this dissertation by
exploring extensions of the results of Chapter 2 to the setting of probabilistic
timed automata. While these probabilistic extensions appear to be relatively
straightfoward as the discrete probability distributions in this setting annotate
only the discrete transitions between locations (and are thus orthogonal to the
clocks), the full (inductive) proofs of the main results in this chapter (Theo-
rems 6.1 and 6.2) have not been presented. We have nonetheless included these
preliminary results in this dissertation, as they very naturally extend the corre-
sponding results for (closed) timed automata. Thus, as in Section 2.3, we show in
Section 6.3 that limit of the max / min probability of reaching a target location
in a closed probabilistic timed automaton remains unchanged for infinitesimally
small perturbations that depend on the iteration depth. As in Section 2.4, we

108 7 Conclusion

show in Section 2.5 that that the max / min reachability probability again
remains unchanged for perturbation parameters strictly less than 1 when the
drifting clocks are subject to regular resynchronization.

The usage of “closedness” in Chapters 4 and 5 that contribute to the structural
axis of this dissertation is in the setting of compositions (primarily in a parallel con-
text) and refers to the (absence of the) interferences that might arise due to shared
variables and / or synchronization actions. In Chapters 2, 3, and 6 that contribute
to the quantitative axis of this dissertation, “closedness” refers to topological clo-
sure of the guards and invariants manifesting as non-strict constraints in the models
considered.

Symbolic Probabilistic Systems

Each of the models considered in this dissertation is a strict subclass of probabilistic
hybrid automata [Spr01], and each subclass may be classified as a symbolic proba-
bilistic system (SPS) [KNS01]. We now attempt a classification scheme for SPS in
order to provide a unifying scheme for the models considered in this dissertation,
along the lines of a probabilistic counterpart to the classification scheme in [HMR05].

• The (closed) perturbed timed automata of Section 2.3 with (unbounded) drifting
clocks characterized by slopes in the range [1

1+ε
, 1 + ε] for a given perturbation

parameter ε > 0 do not in general yield to a (time-abstract) bisimulation quo-
tient on the state-space. Works that do give decision procedures for reachability
in perturbed timed automata largely address the equivalent problem modelled
by a perturbation parameter ∆ > 0 characterizing the guard enlargement, under
the progress cycle and/or flatness assumptions [Pur00, WDMR08, DK06, JR11,
KLMP14, San15]. As (closed) perturbed timed automata under a given pertur-
bation ε > 0 characterizing the extent of the (rectangular) clock-drift appear to
be a subclass of rectangular hybrid automata, we classify the perturbed timed
automata of Section 2.3 in the class STS3, cf. Theorem 3C of [HMR05]. Note
that the decision procedure implied by Theorem 2.1 and Corollary 2.1 involve
perturbation parameters that depend on the depth of iteration.

• As the (closed) perturbed timed automata of Section 2.4 that are subject to
regular clock resynchronization admit a decision procedure for every perturba-
tion parameter ε strictly less than 1, such models may be classified in STS1,
analogous to timed automata, cf. Theorem 1C of [HMR05].

• As the (bounded) Multi-Priced Timed Automata of Chapter 3 may be encoded
as Stop-Watch Automata, thus yielding undecidability, while nonetheless ad-
mitting a decision procedure under the cost-charging assumption, and as the
boundedness condition seems to play a crucial role in both cases, the classifica-
tion of such models that lie at the fine (un-)decidability frontier between timed
and linear hybrid automata remains unclear.

• In Chapter 3, we consider networks of extended timed automata in the context
of a finite number of parallel compositions. As the data variables here have a
finite range, they may be classified in STS1, analogous to timed automata, cf.
Theorem 1C of [HMR05].

• For the probabilistic models of Chapters 5 and 6, we propose an analogous clas-
sification scheme for symbolic probabilistic systems. Thus the finite state PA

7 Conclusion 109

(and finite compositions thereof) fall into the class SPS1, as do the (closed)
perturbed probabilistic timed automata of Section 6.4 subject to regular clock
resynchronization for values of the perturbation parameter ε upto 1. The (closed)
perturbed probabilistic timed automata of Section 6.3 that are subject to un-
bounded rectangular clock drifts fall however into the class SPS3.

References

ABBL03. L. Aceto, P. Bouyer, A. Burgueno, and K. Larsen. The power of
reachability testing for timed automata. Theoretical Computer Sci-
ence, 300:411–475, 2003.

ABG+14. S. Akshay, Benedikt Bollig, Paul Gastin, Madhavan Mukund, and
K. Narayan Kumar. Distributed timed automata with independently
evolving clocks. Fundam. Inform., 130(4):377–407, 2014.

ABH+01. R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Ra-
jamani. Partial-order reduction in symbolic state-space exploration.
FMSD, 18:97–116, 2001.

AC08. Hagit Attiya and Keren Censor. Tight bounds for asynchronous ran-
domized consensus. J. ACM, 55(5), 2008.

ACH+95. R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theor. Comput. Sci., 138(1):3–34, 1995.

AD94. R. Alur and D. Dill. A theory of timed automata. TCS, 126(2):183–
235, 1994.

BBBR07. Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-
François Raskin. On the optimal reachability problem of weighted
timed automata. Formal Methods in System Design, 31(2):135–175,
2007.

BCC+03. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded model checking. Advances in Computers,
58:117–148, 2003.

BDL04. G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In
Formal Methods for the Design of Real-Time Systems, volume 3185 of
LNCS, pages 200–236. Springer, 2004.

BFH+01. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand
Larsen, Paul Pettersson, Judi Romijn, and Frits W. Vaandrager.
Minimum-cost reachability for priced timed automata. In M.-D. Di
Benedetto and A. Sangiovanni-Vincentelli, editors, HSCC, volume 2034
of LNCS, pages 147–161. Springer, 2001.

BFL+08. Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nico-
las Markey, and Jiŕı Srba. Infinite runs in weighted timed automata
with energy constraints. In Franck Cassez and Claude Jard, editors,

References 111

FORMATS, volume 5215 of Lecture Notes in Computer Science, pages
33–47. Springer, 2008.

BGC04. C. Baier, M. Größer, and F. Ciesinski. Partial order reduction for
probabilistic systems. In Quantitative Evaluation of Systems (QEST),
pages 230–239. IEEE CS Press, 2004.

BJLY98. J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reduc-
tions for timed systems. In D. Sangiorgi and R. de Simone, editors,
CONCUR, volume 1466 of LNCS, pages 485–500. Springer, 1998.

BLM14. Patricia Bouyer, Kim G. Larsen, and Nicolas Markey. Lower-bound-
constrained runs in weighted timed automata. Perform. Eval., 73:91–
109, 2014.

BLR. G. Behrmann, K. G. Larsen, and J. I. Rasmussen. Optimal scheduling
using priced timed automata. SIGMETRICS Performance Evaluation
Review, 32.

BMR06. P. Bouyer, N. Markey, and P.-A. Reynier. Robust model-checking of
linear-time properties in timed automata. In J. R. Correa, A. Hevia,
and M. Kiwi, editors, LATIN, volume 3887 of LNCS, pages 238–249.
Springer, 2006.

BMR08. P. Bouyer, N. Markey, and P.-A. Reynier. Robust analysis of timed
automata via channel machines. In R. Armadio, editor, FoSSaCS,
volume 4962 of LNCS, pages 157–171. Springer, 2008.

Boc79. G.v. Bochmann. Distributed synchronization and regularity. Computer
Networks, 3:36–43, 1979.

Boc88. G.v. Bochmann. Delay-independent design for distributed systems.
IEEE Trans. Software Eng., 14(8):1229–1237, 1988.

Bou04. P. Bouyer. Forward analysis of updatable timed automata. Formal
Methods in System Design, 24:281–320, 2004.

Bou09. P. Bouyer. From Qualitative to Quantitative Analysis of Timed Sys-
tems. 2009. Mémoire d’habilitation, Université Paris 7.

BP99. P. Bouyer and A. Petit. Decomposition and composition of timed
automata. In J. Wiedermann, P. van Emde Boas, and M. Nielsen,
editors, ICALP, volume 1644 of LNCS, pages 210–219. Springer, 1999.

BS00. S. Bornot and S. Sifakis. An algebraic framework for urgency. Inf.
Comput., 163:172–202, 2000.

BY04. J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms, and
tools. In Lectures on Concurrency and Petri Nets, volume 3098 of
LNCS, pages 87–124. Springer, 2004.

CCK+08. Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov,
Nancy A. Lynch, Olivier Pereira, and Roberto Segala. Analyzing se-
curity protocols using time-bounded task-PIOAs. Discrete Event Dy-
namic Systems, 18(1):111–159, 2008.

CHR91. Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. A calculus of
durations. Inf. Process. Lett., 40(5):269–276, 1991.

CJ99. H. Comon and Y. Jurski. Timed automata and the theory of real
numbers. In J. C. M. Baeten and S. Mauw, editors, CONCUR, volume
1664 of LNCS, pages 242–257. Springer, 1999.

CL00. Franck Cassez and Kim Guldstrand Larsen. The impressive power of
stopwatches. In Catuscia Palamidessi, editor, CONCUR, volume 1877
of LNCS, pages 138–152. Springer, 2000.

112 References

CM88. K. M. Chandy and J. Misra. Parallel Program Design – A Foundation.
Addison Wesley, 1988.

Coh00. E. Cohen. Separation and reduction. In R. C. Backhouse and J. N.
Oliveira, editors, Mathematics of Program Construction, volume 1837
of LNCS, pages 45–59. Springer, 2000.

CSCBM09. M. Chaouch-Saad, B. Charron-Bost, and S. Merz. A reduction the-
orem for the verification of round-based distributed algorithms. In
O. Bournez and I. Potapov, editors, Reachability Problems (RP), vol-
ume 5797 of LNCS, pages 93–106. Springer, 2009.

dAHM03. L. de Alfaro, T. A. Henzinger, and R. Majumdar. Discounting the
future in systems theory. In J. C. M. Baeten, J. K. Lenstra, J. Parrow,
and G. J. Woeginger, editors, ICALP, volume 2719 of LNCS, pages
1022–1037. Springer, 2003.

DHQ+08. J. S. Dong, P. Hao, S. Qin, J. Sun, and W. Yi. Timed automata
patterns. IEEE Trans. Software Eng., 34(6):844–859, 2008.

Dim07. Catalin Dima. Dynamical properties of timed automata revisited.
In Jean-François Raskin and P. S. Thiagarajan, editors, FORMATS,
volume 4763 of Lecture Notes in Computer Science, pages 130–146.
Springer, 2007.

DK06. C. Daws and P. Kordy. Symbolic robustness analysis of timed
automata. In FORMATS, volume 4202 of LNCS, pages 143–155.
Springer, 2006.

DKFW10. K. Dräger, A. Kupriyanov, B. Finkbeiner, and H. Wehrheim. Slab:
A certifying model checker for infinite-state concurrent systems. In
J. Esparza and R. Majumdar, editors, TACAS, volume 6015 of LNCS,
pages 271–274, 2010.

DN04. P. R. D’Argenio and P. Niebert. Partial order reduction on concur-
rent probabilistic programs. In Quantitative Evaluation of Systems
(QEST), pages 240–249. IEEE CS Press, 2004.

dWDMR04. M. de Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robustness and
implementability of timed automata. In Y. Lakhnech and S. Yovine,
editors, FORMATS-FTRTFT, volume 3253 of LNCS, pages 118–133.
Springer, 2004.

EF82. T. Elrad and N. Francez. Decomposition of distributed programs into
communication-closed layers. Sci. Comput. Program., 2:155–173, 1982.

FH07. Martin Fränzle and Michael R. Hansen. Deciding an interval logic
with accumulated durations. In Orna Grumberg and Michael Huth,
editors, Proceedings of the 13th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
volume 4424 of Lecture Notes in Computer Science, pages 201–215.
Springer, 2007.

GDF09. S. Giro, P. R. D’Argenio, and L. M. F. Fioriti. Partial order reduc-
tion for probabilistic systems: A revision for distributed schedulers.
In M. Bravetti and G. Zavattaro, editors, CONCUR, volume 5710 of
LNCS, pages 338–353. Springer, 2009.

GHJ97. V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed au-
tomata. In O. Maler, editor, Hybrid and Real-Time Systems, volume
1201 of LNCS, pages 331–345. Springer, 1997.

References 113

HKPV98. Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin
Varaiya. What’s decidable about hybrid automata? J. Comput. Syst.
Sci., 57(1):94–124, 1998.

HMR05. T. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of sym-
bolic transition systems. ACM Transactions on Computational Logic,
6(1):1–32, 2005.

HP07. J. Haakansson and P. Pettersson. Partial order reduction for verifica-
tion of real-time components. In J.-F. Raskin and P. S. Thiagarajan,
editors, FORMATS, volume 4763 of LNCS, pages 211–226. Springer,
2007.

Jan94. W. Janssen. Layered Design of Parallel Systems. PhD thesis, U.
Twente, 1994.

JPXZ94. W. Janssen, M. Poel, Q. Xu, and J. Zwiers. Layering of real-time dis-
tributed processes. In H. Langmaack, W. P. de Roever, and J. Vytopil,
editors, FTRTFT, volume 863 of LNCS, pages 393–417. Springer, 1994.

JR11. Rémi Jaubert and Pierre-Alain Reynier. Quantitative robustness anal-
ysis of flat timed automata. In Martin Hofmann, editor, FOSSACS,
volume 6604 of Lecture Notes in Computer Science, pages 229–244.
Springer, 2011.

JZ92. Wil Janssen and Job Zwiers. From sequential layers to distributed
processes: Deriving a distributed minimum weight spanning tree algo-
rithm. In Principles of Distributed Computing (PODC), pages 215–227.
ACM Press, 1992.

KLMP14. Piotr Kordy, Rom Langerak, Sjouke Mauw, and Jan Willem Polder-
man. A symbolic algorithm for the analysis of robust timed automata.
In Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun, editors, Formal
Methods, volume 8442 of Lecture Notes in Computer Science, pages
351–366. Springer, 2014.

KNP09. Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Stochastic
games for verification of probabilistic timed automata. In FORMATS,
pages 212–227, 2009.

KNPS06. Marta Z. Kwiatkowska, Gethin Norman, David Parker, and Jeremy
Sproston. Performance analysis of probabilistic timed automata using
digital clocks. Formal Methods in System Design, 29(1):33–78, 2006.

KNS01. M. Z. Kwiatkowska, G. Norman, and J. Sproston. Symbolic com-
putation of maximal probabilistic reachability. In K. G. Larsen and
M. Nielsen, editors, CONCUR, volume 2154 of LNCS, pages 169–183.
Springer, 2001.

KNSS02. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic
verification of real-time systems with discrete probability distributions.
Theoretical Computer Science, 282:101–150, 2002.

KNSW07. Marta Z. Kwiatkowska, Gethin Norman, Jeremy Sproston, and Fuzhi
Wang. Symbolic model checking for probabilistic timed automata. Inf.
Comput., 205(7):1027–1077, 2007.

Koe36. D. Koenig. Theorie der Endlichen und Unendlichen Graphen: Kom-
binatorische Topologie der Streckenkomplexe. Leipzig: Akad. Verlag,
1936.

KR92. E. Kushilevitz and M. O. Rabin. Randomized mutual exclusion algo-
rithms revisited. In PODC, pages 275–283, 1992.

114 References

KvST12. J. P. Katoen, J. C. van de Pol, M. I. A. Stoelinga, and M. Timmer. A
linear process-algebraic format with data for probabilistic automata.
Theor. Comput. Sci., 413(1):36–57, 2012.

LBB+01. Kim Guldstrand Larsen, Gerd Behrmann, Ed Brinksma, Ansgar
Fehnker, Thomas Hune, Paul Pettersson, and Judi Romijn. As cheap as
possible: Efficient cost-optimal reachability for priced timed automata.
In Gérard Berry, Hubert Comon, and Alain Finkel, editors, CAV, vol-
ume 2102 of LNCS, pages 493–505. Springer, 2001.

LNZ05. D. Lugiez, P. Niebert, and S. Zennou. A partial order semantics ap-
proach to the clock explosion problem of timed automata. Theor.
Comput. Sci., 345:27–59, 2005.

LPY01. M. Lindahl, P. Pettersson, and W. Yi. Formal design and analysis of
a gear controller. Software Tools for Technology Transfer, 3:353–368,
2001.

LR08. Kim Guldstrand Larsen and Jacob Illum Rasmussen. Optimal reach-
ability for multi-priced timed automata. Theor. Comput. Sci., 390(2-
3):197–213, 2008.

LSW96. K. G. Larsen, B. Steffen, and C. Weise. Fischer’s protocol revisited: A
simple proof using modal constraints. In R. Alur, T. A. Henzinger, and
E. D. Sontag, editors, Hybrid Systems, volume 1066 of LNCS, pages
604–615. Springer, 1996.

MGCM08. A. K. McIver, C. Gonzalia, E. Cohen, and C. C. Morgan. Using prob-
abilistic Kleene algebra pKA for protocol verification. J. Log. Algebr.
Program., 76(1):90–111, 2008.

Mil89. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
Min99. M. Minea. Partial order reduction for model checking of timed au-

tomata. In J. C. M. Baeten and S. Mauw, editors, CONCUR, volume
1664 of LNCS, pages 431–436. Springer, 1999.

MR02. Yoram Moses and Sergio Rajsbaum. A layered analysis of consensus.
SIAM J. Comput., 31(4):989–1021, 2002.

MWF14. Ahmed Mahdi, Bernd Westphal, and Martin Fränzle. Transformations
for compositional verification of assumption-commitment properties.
In Joël Ouaknine, Igor Potapov, and James Worrell, editors, Reacha-
bility Problems, volume 8762 of LNCS, pages 216–229. Springer, 2014.

MWP12. M. Muniz, B. Westphal, and A. Podelski. Timed automata with dis-
joint activity. In M. Jurdzinski and D. Nickovic, editors, FORMATS,
volume 7595 of LNCS, pages 188–203. Springer, 2012.

OD08. E.-R. Olderog and H. Dierks. Real-time systems - formal specification
and automatic verification. Cambridge University Press, 2008.

OW03. J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and
decidability for timed automata. In LICS, pages 198–207. IEEE Com-
puter Society, 2003.

PM09. H.-J. Peter and R. Mattmüller. Component-based abstraction refine-
ment for timed controller synthesis. In RTSS, pages 364–374. IEEE
Computer Society, 2009.

PSE03. Sebastian Panek, Olaf Stursberg, and Sebastian Engell. Optimiza-
tion of timed automata models using mixed-integer programming. In
Kim Guldstrand Larsen and Peter Niebert, editors, FORMATS, vol-
ume 2791 of Lecture Notes in Computer Science, pages 73–87. Springer,
2003.

References 115

PSL00. Anna Pogosyants, Roberto Segala, and Nancy A. Lynch. Verification
of the randomized consensus algorithm of Aspnes and Herlihy: a case
study. Distributed Computing, 13(3):155–186, 2000.

Pur00. A. Puri. Dynamical properties of timed automata. Discrete Event
Dynamic Systems, 10:87–113, 2000.

Qua10. Karin Quaas. Kleene-Schützenberger and Büchi Theorems for Weighted
Timed Automata. PhD thesis, University of Leipzig, 2010.

Rab82. M. O. Rabin. n-process mutual exclusion with bounded waiting by
4 log n shared variables. J. Comput. Syst. Sci., 25(1):66–75, 1982.

Sai92. I. Saias. Proving probabilistic correctness statements: the case of Ra-
bin’s algorithm for mutual exclusion. In Principles of Distributed Com-
puting (PODC), pages 263–274. ACM Press, 1992.

San13. Ocan Sankur. Robustness in Timed Automata: Analysis, Synthesis,
Implementation. PhD thesis, ENS Cachan, 2013.

San15. Ocan Sankur. Symbolic quantitative robustness analysis of timed au-
tomata. In Christel Baier and Cesare Tinelli, editors, TACAS, volume
9035 of Lecture Notes in Computer Science, pages 484–498. Springer,
2015.

SdR94. F. A. Stomp and W.-P. de Roever. A principle for sequential reasoning
about distributed algorithms. Formal Asp. Comput., 6(6):716–737,
1994.

Seg95. R. Segala. Modeling and Verification of Randomized Distributed Real-
Time Systems. PhD thesis, Massachusetts Institute of Technology,
1995.

Seg00. Roberto Segala. Verification of randomized distributed algorithms.
In Ed Brinksma, Holger Hermanns, and Joost-Pieter Katoen, editors,
Formal Methods and Performance Analysis, volume 2090 of LNCS,
pages 232–260. Springer, 2000.

Sha15. Arpit Sharma. Reduction techniques for Nondeterministic and Proba-
bilistic Systems. PhD thesis, RWTH Aachen University, 2015.

SL95. R. Segala and N. Lynch. Probabilistic simulations for probabilistic
processes. Nordic J. Computing, 2(2):250–273, 1995.

Spr01. Jeremy Sproston. Model Checking for Probabilistic Timed and Hybrid
Systems. PhD thesis, University of Birmingham, 2001.

Sto02. Mariëlle Stoelinga. An introduction to probabilistic automata. Bulletin
of the EATCS, 78:176–198, 2002.

SV99. Mariëlle Stoelinga and Frits W. Vaandrager. Root contention in IEEE
1394. In Joost-Pieter Katoen, editor, AMAST Workshop on Real-Time
and Probabilistic Systems (ARTS), volume 1601 of LNCS, pages 53–74.
Springer, 1999.

TSvdP11. Mark Timmer, Mariëlle Stoelinga, and Jaco van de Pol. Confluence
reduction for probabilistic systems. In P. A. Abdulla and K. R. M.
Leino, editors, Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 6605 of LNCS, pages 311–325. Springer,
2011.

Č92. K. Čerāns. Algorithmic Problems in Analysis of Real Time System
Specifications. PhD thesis, University of Latvia, 1992.

WDMR08. M De Wulf, L. Doyen, N. Markey, and J.-F Raskin. Robust safety of
timed automata. Formal Methods in System Design, 33:45–84, 2008.

116 References

Yov97. S. Yovine. KRONOS: A verification tool for real-time systems. In-
ternational Journal on Software Tools for Technology Transfer, 1(1-
2):123–133, 1997.

List of Publications

1. M. Swaminathan and M. Fränzle, “A Symbolic Decision Procedure for Robust
Safety of Timed Systems”, 14th Intl. Symposium on Temporal Representation
and Reasoning (TIME’07), p. 192, IEEE Computer Society (2007).

2. M. Swaminathan, M. Fränzle, and J.-P. Katoen, “The Surprising Robustness
of (Closed) Timed Automata against Clock-Drift”, 5th IFIP Intl. Conf. on
Theoretical Computer Science (IFIP TCS’08), Vol. 273, Intl. Federation for
Information Processing, pp. 537–553, Springer (2008).

3. M. Fränzle and M. Swaminathan, “Revisiting Decidability & Optimum Reach-
ability for Multipriced Timed Automata”, 7th Intl. Conf. on Formal Modeling
and Analysis of Timed Systems (FORMATS’09), Vol. 5813, Lecture Notes in
Computer Science, pp. 149–163, Springer (2009).

4. E.-R. Olderog and M. Swaminathan, “Layered Composition for Timed Au-
tomata”, 8th Intl. Conf. on Formal Modeling and Analysis of Timed Systems
(FORMATS’10), Vol. 6246, Lecture Notes in Computer Science, pp. 228–242,
Springer (2010).

5. M. Swaminathan, J.-P. Katoen, and E.-R. Olderog, “Layered Reasoning for
Randomized Distributed Algorithms”, Formal Aspects of Computing, Vol. 24,
Nr. 4–6, pp. 477–496, Springer (2012).

6. E.-R. Olderog and M. Swaminathan, “Structural Transformations for Data-
Enriched Real-Time Systems”, 10th Intl. Conf. on Integrated Formal Methods
(iFM’13), Vol. 7940, Lecture Notes in Computer Science, pp. 378–393, Springer
(2013).

7. E.-R. Olderog and M. Swaminathan, “Structural Transformations for Data-
Enriched Real-Time Systems”, Formal Aspects of Computing, Vol. 27. Nr. 4,
pp. 727–750, Springer (2015).

	Introduction
	Robustness of Closed Perturbed Timed Automata
	(Un-)Decidability of Bounded Multi-Priced Timed Automata
	Structural Transformations for Extended Timed Automata
	Layered Transformations for Networks of Probabilistic Automata
	Robustness of Closed Perturbed Probabilistic Timed Automata
	Conclusion
	References
	List of Publications

